An Introduction to Interdependent Networks

  • Michael M. Danziger
  • Amir Bashan
  • Yehiel Berezin
  • Louis M. Shekhtman
  • Shlomo Havlin
Part of the Communications in Computer and Information Science book series (CCIS, volume 438)


Many real-world phenomena can be modelled using networks. Often, these networks interact with one another in non-trivial ways. Recently, a theory of interdependent networks has been developed which describes dependency between nodes across networks. Interdependent networks have a number of unique properties which are absent in single networks. In particular, systems of interdependent networks often undergo abrupt first-order percolation transitions induced by cascading failures. Here we present an overview of recent developments and significant findings regarding interdependent networks and networks of networks.


Percolation Theory Critical Infrastructure Single Network Percolation Transition Connectivity Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Erdős, P., Rényi, A.: On random graphs i. Publ. Math. Debrecen 6, 290 (1959)Google Scholar
  2. 2.
    Erdős, P., Rényi, A.: On the strength of connectedness of a random graph. Acta Mathematica Academiae Scientiarum Hungaricae 12(1-2), 261–267 (Mar 1964)Google Scholar
  3. 3.
    Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics. Springer, New York (1998)Google Scholar
  4. 4.
    Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Caldarelli, G.: Scale-free networks: complex webs in nature and technology. Oxford University Press (2007)Google Scholar
  6. 6.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  7. 7.
    Amaral, L.A.N., Scala, A., Barthélemy, M., Stanley, H.E.: Classes of small-world networks. Proceedings of the National Academy of Sciences 97(21), 11149–11152 (2000)CrossRefGoogle Scholar
  8. 8.
    Newman, M.: Networks: An introduction. OUP, Oxford (2010)Google Scholar
  9. 9.
    Cohen, R., Havlin, S.: Complex Networks: Structure, Robustness and Function. Cambridge University Press (2010)Google Scholar
  10. 10.
    Cohen, R., Erez, K., ben Avraham, D., Havlin, S.: Resilience of the Internet to Random Breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000)Google Scholar
  11. 11.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)Google Scholar
  12. 12.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters 12(3), 211–223 (2001)CrossRefGoogle Scholar
  13. 13.
    Yamasaki, K., Gozolchiani, A., Havlin, S.: Climate networks around the globe are significantly affected by el niño. Phys. Rev. Lett. 100, 228501 (2008)CrossRefGoogle Scholar
  14. 14.
    Bunde, A., Havlin, S.: Fractals and disordered systems. Springer-Verlag New York, Inc. (1991)Google Scholar
  15. 15.
    Stauffer, D., Aharony, A.: Introduction To Percolation Theory. Taylor & Francis (1994)Google Scholar
  16. 16.
    Stanley, H.: Introduction to Phase Transitions and Critical Phenomena. International series of monographs on physics. Oxford University Press (1971)Google Scholar
  17. 17.
    Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Frontiers in Physics. Addison-Wesley, Advanced Book Program (1992)Google Scholar
  18. 18.
    Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)CrossRefGoogle Scholar
  19. 19.
    Barthélemy, M.: Spatial networks. Physics Reports 499(1-3), 1–101 (2011)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Bianconi, G.: Statistical mechanics of multiplex networks: Entropy and overlap. Phys. Rev. E 87, 062806 (2013)Google Scholar
  21. 21.
    Nicosia, V., Bianconi, G., Latora, V., Barthelemy, M.: Growing multiplex networks. Phys. Rev. Lett. 111, 058701 (2013)Google Scholar
  22. 22.
    De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)Google Scholar
  23. 23.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer Networks. ArXiv e-prints (September 2013)Google Scholar
  24. 24.
    Goldenberg, J., Shavitt, Y., Shir, E., Solomon, S.: Distributive immunization of networks against viruses using the ‘honey-pot’ architecture Dimension of spatially embedded networks. Nature Physics 1(3), 184–188 (2005)CrossRefGoogle Scholar
  25. 25.
    Rinaldi, S., Peerenboom, J., Kelly, T.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Systems 21(6), 11–25 (2001)CrossRefGoogle Scholar
  26. 26.
    Hokstad, P., Utne, I., Vatn, J.: Risk and Interdependencies in Critical Infrastructures: A Guideline for Analysis. Springer Series in Reliability Engineering. Springer (2012)Google Scholar
  27. 27.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)CrossRefGoogle Scholar
  28. 28.
    Foster Jr., J.S., Gjelde, E., Graham, W.R., Hermann, R.J., Kluepfel, H.M., Lawson, R.L., Soper, G.K., Wood, L.L., Woodard, J.B.: Report of the commission to assess the threat to the united states from electromagnetic pulse (emp) attack: Critical national infrastructures. Technical report, DTIC Document (2008)Google Scholar
  29. 29.
    Bashan, A., Berezin, Y., Buldyrev, S.V., Havlin, S.: The extreme vulnerability of interdependent spatially embedded networks. Nature Physics 9, 667–672 (2013)CrossRefGoogle Scholar
  30. 30.
    Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent Networks: Reducing the Coupling Strength Leads to a Change from a First to Second Order Percolation Transition. Phys. Rev. Lett. 105, 048701 (2010)Google Scholar
  31. 31.
    Buldyrev, S.V., Paul, G., Stanley, H.E., Havlin, S.: Network of interdependent networks: Overview of theory and applications. In: D’Agostino, G., Scala, A. (eds.) Networks of Networks: The Last Frontier of Complexity. Understanding Complex Systems, pp. 3–36. Springer International Publishing (2014)Google Scholar
  32. 32.
    D’Agostino, G., Scala, A.: Networks of Networks: The Last Frontier of Complexity. Understanding Complex Systems. Springer International Publishing (2014)Google Scholar
  33. 33.
    Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93, 098701 (2004)Google Scholar
  34. 34.
    Dobson, I., Carreras, B.A., Lynch, V.E., Newman, D.E.: Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization. Chaos: An Interdisciplinary Journal of Nonlinear Science 17(2), 026103 (2007)Google Scholar
  35. 35.
    Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Avalanche Collapse of Interdependent Networks. Phys. Rev. Lett. 109, 248701 (2012)CrossRefGoogle Scholar
  36. 36.
    Zhou, D., Bashan, A., Berezin, Y., Cohen, R., Havlin, S.: On the Dynamics of Cascading Failures in Interdependent Networks. ArXiv e-prints (November 2012)Google Scholar
  37. 37.
    Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)Google Scholar
  38. 38.
    Watanabe, S., Kabashima, Y.: Cavity-based robustness analysis of interdependent networks: Influences of intranetwork and internetwork degree-degree correlations. Phys. Rev. E 89, 012808 (2014)Google Scholar
  39. 39.
    Zhou, D., Gao, J., Stanley, H.E., Havlin, S.: Percolation of partially interdependent scale-free networks. Phys. Rev. E 87, 052812 (2013)Google Scholar
  40. 40.
    Leicht, E.A., D’Souza, R.M.: Percolation on interacting networks. ArXiv e-prints (July 2009)Google Scholar
  41. 41.
    Hu, Y., Ksherim, B., Cohen, R., Havlin, S.: Percolation in interdependent and interconnected networks: Abrupt change from second- to first-order transitions. Phys. Rev. E 84, 066116 (2011)Google Scholar
  42. 42.
    Parshani, R., Buldyrev, S.V., Havlin, S.: Critical effect of dependency groups on the function of networks. Proceedings of the National Academy of Sciences 108(3), 1007–1010 (2011)CrossRefGoogle Scholar
  43. 43.
    Bashan, A., Parshani, R., Havlin, S.: Percolation in networks composed of connectivity and dependency links. Phys. Rev. E 83, 051127 (2011)Google Scholar
  44. 44.
    Zhao, J.H., Zhou, H.J., Liu, Y.Y.: Inducing effect on the percolation transition in complex networks. Nature Communications 4 (September 2013)Google Scholar
  45. 45.
    Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a Network of Networks. Phys. Rev. Lett. 107, 195701 (2011)CrossRefGoogle Scholar
  46. 46.
    Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nature Physics 8(1), 40–48 (2012)CrossRefGoogle Scholar
  47. 47.
    Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes. Phys. Rev. E 85, 066134 (2012)Google Scholar
  48. 48.
    Gao, J., Buldyrev, S.V., Stanley, H.E., Xu, X., Havlin, S.: Percolation of a general network of networks. Phys. Rev. E 88, 062816 (2013)Google Scholar
  49. 49.
    Shekhtman, L.M., Berezin, Y., Danziger, M.M., Havlin, S.: Robustness of a Network Formed of Spatially Embedded Networks. ArXiv e-prints (February 2014)Google Scholar
  50. 50.
    Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E 83, 036116 (2011)Google Scholar
  51. 51.
    Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A.: Assortativity decreases the robustness of interdependent networks. Phys. Rev. E 86, 066103 (2012)Google Scholar
  52. 52.
    Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C., Havlin, S.: Inter-similarity between coupled networks. EPL (Europhysics Letters) 92(6), 68002 (2010)CrossRefGoogle Scholar
  53. 53.
    Buldyrev, S.V., Shere, N.W., Cwilich, G.A.: Interdependent networks with identical degrees of mutually dependent nodes. Phys. Rev. E 83, 016112 (2011)Google Scholar
  54. 54.
    Valdez, L.D., Macri, P.A., Stanley, H.E., Braunstein, L.A.: Triple point in correlated interdependent networks. Phys. Rev. E 88, 050803 (2013)Google Scholar
  55. 55.
    Lee, K.M., Kim, J.Y., Cho, W.K., Goh, K.I., Kim, I.M.: Correlated multiplexity and connectivity of multiplex random networks. New Journal of Physics 14(3), 33027 (2012)CrossRefGoogle Scholar
  56. 56.
    Cellai, D., López, E., Zhou, J., Gleeson, J.P., Bianconi, G.: Percolation in multiplex networks with overlap. Phys. Rev. E 88, 052811 (2013)Google Scholar
  57. 57.
    Li, M., Liu, R.R., Jia, C.X., Wang, B.H.: Critical effects of overlapping of connectivity and dependence links on percolation of networks. New Journal of Physics 15(9), 093013 (2013)Google Scholar
  58. 58.
    Hu, Y., Zhou, D., Zhang, R., Han, Z., Rozenblat, C., Havlin, S.: Percolation of interdependent networks with intersimilarity. Phys. Rev. E 88, 052805 (2013)Google Scholar
  59. 59.
    Newman, M.E.J.: Random graphs with clustering. Phys. Rev. Lett. 103, 058701 (2009)Google Scholar
  60. 60.
    Huang, X., Shao, S., Wang, H., Buldyrev, S.V., Eugene Stanley, H., Havlin, S.: The robustness of interdependent clustered networks. EPL 101(1), 18002 (2013)CrossRefGoogle Scholar
  61. 61.
    Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S.D., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures 4(1/2), 63 (2008)CrossRefGoogle Scholar
  62. 62.
    Hines, P., Blumsack, S., Cotilla Sanchez, E., Barrows, C.: The Topological and Electrical Structure of Power Grids. In: 2010 43rd Hawaii International Conference on System Sciences (HICSS), pp. 1–10 (2010)Google Scholar
  63. 63.
    Li, D., Kosmidis, K., Bunde, A., Havlin, S.: Dimension of spatially embedded networks. Nature Physics 7(6), 481–484 (2011)CrossRefGoogle Scholar
  64. 64.
    Li, W., Bashan, A., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Cascading Failures in Interdependent Lattice Networks: The Critical Role of the Length of Dependency Links. Phys. Rev. Lett. 108, 228702 (2012)CrossRefGoogle Scholar
  65. 65.
    Berezin, Y., Bashan, A., Danziger, M.M., Li, D., Havlin, S.: Spatially localized attacks on interdependent networks: The existence of a finite critical attack size. ArXiv e-prints (October 2013)Google Scholar
  66. 66.
    Danziger, M.M., Bashan, A., Berezin, Y., Havlin, S.: Interdependent spatially embedded networks: Dynamics at percolation threshold. In: 2013 International Conference on Signal-Image Technology Internet-Based Systems (SITIS), pp. 619–625 (December 2013)Google Scholar
  67. 67.
    Nienhuis, B.: Analytical calculation of two leading exponents of the dilute potts model. Journal of Physics A: Mathematical and General 15(1), 199 (1982)CrossRefMathSciNetGoogle Scholar
  68. 68.
    Huang, X., Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of interdependent networks under targeted attack. Phys. Rev. E 83, 065101 (2011)Google Scholar
  69. 69.
    Dong, G., Gao, J., Du, R., Tian, L., Stanley, H.E., Havlin, S.: Robustness of network of networks under targeted attack. Phys. Rev. E 87, 052804 (2013)Google Scholar
  70. 70.
    Schneider, C.M., Yazdani, N., Araújo, N.A., Havlin, S., Herrmann, H.J.: Towards designing robust coupled networks. Scientific Reports 3 (2013)Google Scholar
  71. 71.
    Valdez, L.D., Macri, P.A., Braunstein, L.A.: A triple point induced by targeted autonomization on interdependent scale-free networks. Journal of Physics A: Mathematical and Theoretical 47(5), 055002 (2014)Google Scholar
  72. 72.
    Stippinger, M., Kertész, J.: Enhancing resilience of interdependent networks by healing. ArXiv e-prints (December 2013)Google Scholar
  73. 73.
    Agarwal, P.K., Efrat, A., Ganjugunte, S., Hay, D., Sankararaman, S., Zussman, G.: The resilience of WDM networks to probabilistic geographical failures. In: 2011 Proceedings of the IEEE, INFOCOM, pp. 1521–1529 (2011)Google Scholar
  74. 74.
    Bernstein, A., Bienstock, D., Hay, D., Uzunoglu, M., Zussman, G.: Sensitivity analysis of the power grid vulnerability to large-scale cascading failures. SIGMETRICS Perform. Eval. Rev. 40(3), 33–37 (2012)CrossRefGoogle Scholar
  75. 75.
    Son, S.W., Bizhani, G., Christensen, C., Grassberger, P., Paczuski, M.: Percolation theory on interdependent networks based on epidemic spreading. EPL (Europhysics Letters) 97(1), 16006 (2012)CrossRefGoogle Scholar
  76. 76.
    Saumell-Mendiola, A., Serrano, M.Á., Boguñá, M.: Epidemic spreading on interconnected networks. Phys. Rev. E 86, 026106 (2012)Google Scholar
  77. 77.
    Dickison, M., Havlin, S., Stanley, H.E.: Epidemics on interconnected networks. Phys. Rev. E 85, 066109 (2012)Google Scholar
  78. 78.
    Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P.: Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 88, 022801 (2013)Google Scholar
  79. 79.
    Erez, T., Hohnisch, M., Solomon, S.: Statistical economics on multi-variable layered networks. In: Salzano, M., Kirman, A. (eds.) Economics: Complex Windows. New Economic Windows, pp. 201–217. Springer, Milan (2005)Google Scholar
  80. 80.
    Huang, X., Vodenska, I., Havlin, S., Stanley, H.E.: Cascading failures in bi-partite graphs: Model for systemic risk propagation. Sci. Rep. 3 (February 2013)Google Scholar
  81. 81.
    Bashan, A., Bartsch, R.P., Kantelhardt, J.W., Havlin, S., Ivanov, P.C.: Network physiology reveals relations between network topology and physiological function. Nature Communications 3, 702 (2012)CrossRefGoogle Scholar
  82. 82.
    Pocock, M.J.O., Evans, D.M., Memmott, J.: The robustness and restoration of a network of ecological networks. Science 335(6071), 973–977 (2012)CrossRefGoogle Scholar
  83. 83.
    Donges, J., Schultz, H., Marwan, N., Zou, Y., Kurths, J.: Investigating the topology of interacting networks. The European Physical Journal B 84(4), 635–651 (2011)CrossRefGoogle Scholar
  84. 84.
    Morris, R.G., Barthelemy, M.: Transport on Coupled Spatial Networks. Phys. Rev. Lett. 109, 128703 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael M. Danziger
    • 1
  • Amir Bashan
    • 2
  • Yehiel Berezin
    • 1
  • Louis M. Shekhtman
    • 1
  • Shlomo Havlin
    • 1
  1. 1.Department of PhysicsBar Ilan UniversityRamat GanIsrael
  2. 2.Channing Division of Network MedicineBrigham Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations