Unfolding the Threshold Switching Behavior of a Memristor

  • Stefan Slesazeck
  • Alon Ascoli
  • Hannes Mähne
  • Ronald Tetzlaff
  • Thomas Mikolajick
Part of the Communications in Computer and Information Science book series (CCIS, volume 438)


Employing a mathematical model based upon Chua’s unfolding theorem, some aspects of the nonlinear dynamics of a thermally-activated micro-scale NbO x /Nb 2 O 5 volatile memristor were modeled. Insights into the peculiar behavior of the device are gained through experiments and model-based simulations. Particularly, this enables us to reproduce its threshold switching behavior under quasi-static excitation, and to explain under which conditions the off-to-on switching is accompanied by the appearance of a negative differential resistance region on its current-voltage characteristic.


Memristor Unfolding Theorem Nonlinear Dynamics Threshold switching Local activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pickett, M.D., Williams, R.S.: Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23(21), 215202(9pp) (2012)Google Scholar
  2. 2.
    Mähne, H., Wylezich, H., Slesazeck, S., Mikolajick, T., Vesely, J., Klemm, V., Rafaja, D., Room temperature fabricated NbO x/Nb 2 O 5 memory switching device with threshold switching effect. In: Proc. 5th IEEE Int. Memory Workshop (IMW), pp. 174–177 (2013)Google Scholar
  3. 3.
    Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S.: A scalable neuristor built with Mott memristors. Nature Materials 12(2), 114–117 (2012)CrossRefGoogle Scholar
  4. 4.
    Ascoli, A., Corinto, F., Senger, V., Tetzlaff, R.: Memristor model comparison. IEEE Circuits and Systems Magazine 13(2), 89–105 (2013), doi:10.1109/MCAS.2013.2256272CrossRefGoogle Scholar
  5. 5.
    Corinto, F., Ascoli, A.: A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. on Circuits and Systems–I 59(11), 2713–2726 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Corinto, F., Ascoli, A., Gilli, M.: Memristor models for pattern recognition systems. In: Kozma, R., Pino, R., Pazienza, G. (eds.) Advances in Neuromorphic Memristor Science and Applications. Springer Series in Cognitive and Neural Systems, vol. 4, part 3, pp. 245–268. Springer (2012)Google Scholar
  7. 7.
    Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of Memristor Oscillators. IEEE Trans. Circuits Syst.–I 58(6), 1323–1336 (2011), doi:10.1109/TCSI.2010.2097731 ISSN: 1549-8328Google Scholar
  8. 8.
    Corinto, F., Ascoli, A., Gilli, M.: Analysis of current-voltage characteristics for memristive elements in pattern recognition systems. Int. J. Circuit Theory Appl. 40(12), 1277–1320 (2012), doi:10.1002/cta.1804CrossRefGoogle Scholar
  9. 9.
    Mähne, H., Berger, L., Martin, D., Klemm, V., Slesazeck, S., Jakschik, S., Rafaja, D., Mikolajick, T.: Filamentary resistive switching in amorphous and polycrystalline Nb 2 O 5 thin films. Solid-State Electronics 72, 73–77 (2012)CrossRefGoogle Scholar
  10. 10.
    Ascoli, A., Schmidt, T., Tetzlaff, R., Corinto, F.: Application of the Volterra Series paradigm to memristive systems. In: Tetzlaff, R. (ed.) Memristors and Memristive Systems, ch. 5, pp. 163–191. Springer, New York (2014) ISBN: 978-1-4614-9067-8Google Scholar
  11. 11.
    Chua, L.O., Kang, S.-M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Pickett, M.D., Williams, R.S.: Phase transitions enable computational universality in neuristor-based cellular automata. Nanotechnology 24(38), 384002(7pp), (2013)Google Scholar
  13. 13.
    Kim, S., Lee, W., Hwang, H.: Selector devices for cross-point ReRAM. In: Proc. IEEE Int. Workshop on Cellular Nanoscale Networks and their Applications (CNNA), Turin, Italy (2012)Google Scholar
  14. 14.
    Chua, L.O.: Local activity is the origin of complexity. Int. J. on Bifurcation and Chaos 15(11), 3435–3456 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Chua, L.O.: CNN: A paradigm for complexity. Word Scientific Series on Nonlinear Science, Series Editor: L. O. Chua. Word Scientific Publishing Co. Pte. Ltd. (1998) ISBN: 981-02-3483-XGoogle Scholar
  16. 16.
    Ascoli, A., Corinto, F.: Memristor models in chaotic neural circuits. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, World Scientific 23(3), 1350052(28) (2013) ISSN: 0218-1274Google Scholar
  17. 17.
    Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)CrossRefGoogle Scholar
  18. 18.
    Chua, L.O.: Memristor: The missing circuit element. IEEE Trans. on Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  19. 19.
    Ascoli, A., Senger, V., Tetzlaff, R., Corinto, F.: A novel memristor polynomial model. In: Proc. of Nonlinear Dynamics of Electronic Systems, Bari, Italy (2013)Google Scholar
  20. 20.
    Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics 106, 074508(1)–074508(6) (2009)Google Scholar
  21. 21.
    Mähne, H., Slesazeck, S., Jakschick, S., Dirnstorfer, I., Mikolajick, T.: The influence of crystallinity on the resistive switching behavior of TiO 2. Microelectronic Engineering 88, 1148–1151 (2011)CrossRefGoogle Scholar
  22. 22.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  23. 23.
    Chua, L.O.: The Fourth Element. Proc. of the IEEE 100(6), 1920–1927 (2012)CrossRefGoogle Scholar
  24. 24.
    Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. IEEE IET Electronics Letters 48(14), 824–825 (2012), doi:10.1049/el.2012.1480CrossRefGoogle Scholar
  25. 25.
    Strogatz, S.H.: Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Westview Press, Perseus Books Publishing Group (1994) ISBN-13: 978-0-7382-0453-6Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stefan Slesazeck
    • 1
  • Alon Ascoli
    • 2
  • Hannes Mähne
    • 1
  • Ronald Tetzlaff
    • 2
  • Thomas Mikolajick
    • 1
    • 3
  1. 1.NaMLab gGmbH Nano-electronic Materials LaboratoryDresdenDeutschland
  2. 2.Institut für Grundlagen der Elektrotechnik und ElektronikTechnische Universität DresdenDresdenDeutschland
  3. 3.Institut für Halbleiter- und MikrosystemtechnikTechnische Universität DresdenDresdenDeutschland

Personalised recommendations