Advertisement

On Adjunctions between Fuzzy Preordered Sets: Necessary Conditions

  • Francisca García-Pardo
  • Inma P. Cabrera
  • Pablo Cordero
  • Manuel Ojeda-Aciego
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8536)

Abstract

There exists a direct relation between fuzzy rough sets and fuzzy preorders. On the other hand, it is well known the existing parallelism between Formal Concept Analysis and Rough Set Theory. In both cases, Galois connections play a central role. In this work, we focus on adjunctions (also named isotone Galois connections) between fuzzy preordered sets; specifically, we study necessary conditions that have to be fulfilled in order such an adjunction to exist.

Keywords

Galois connection Adjunction Preorder Fuzzy sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bělohlávek, R.: Fuzzy Galois connections. Mathematical Logic Quarterly 45(4), 497–504 (1999)Google Scholar
  2. 2.
    Bělohlávek, R.: Lattices of fixed points of fuzzy Galois connections. Mathematical Logic Quartely 47(1), 111–116 (2001)Google Scholar
  3. 3.
    Bělohlávek, R., Osička, P.: Triadic fuzzy Galois connections as ordinary connections. In: IEEE Intl Conf. on Fuzzy Systems (2012)Google Scholar
  4. 4.
    Bodenhofer, U.: A similarity-based generalization of fuzzy orderings preserving the classical axioms. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(5), 593–610 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bodenhofer, U.: Representations and constructions of similarity-based fuzzy orderings. Fuzzy Sets and Systems 137(1), 113–136 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bodenhofer, U., Klawonn, F.: A formal study of linearity axioms for fuzzy orderings. Fuzzy Sets and Systems 145(3), 323–354 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bodenhofer, U., De Baets, B., Fodor, J.: A compendium of fuzzy weak orders: Representations and constructions. Fuzzy Sets and Systems 158(8), 811–829 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Börner, F.: Basics of Galois connections. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 38–67. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Castellini, G., Koslowski, J., Strecker, G.E.: Categorical closure operators via Galois connections. Mathematical Research 67, 72–72 (1992)MathSciNetGoogle Scholar
  10. 10.
    Cohen, D., Creed, P., Jeavons, P., Živný, S.: An algebraic theory of complexity for valued constraints: Establishing a Galois connection. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 231–242. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Csajbók, Z., Mihálydeák, T.: Partial approximative set theory: generalization of the rough set theory. Intl J. of Computer Information Systems and Industrial Management Applications 4, 437–444 (2012)Google Scholar
  12. 12.
    Denecke, K., Erné, M., Wismath, S.L.: Galois connections and applications, vol. 565. Springer (2004)Google Scholar
  13. 13.
    Djouadi, Y., Prade, H.: Interval-valued fuzzy Galois connections: Algebraic requirements and concept lattice construction. Fundamenta Informaticae 99(2), 169–186 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Frascella, A.: Fuzzy Galois connections under weak conditions. Fuzzy Sets and Systems 172(1), 33–50 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    García, J.G., Mardones-Pérez, I., de Prada-Vicente, M.A., Zhang, D.: Fuzzy Galois connections categorically. Math. Log. Q. 56(2), 131–147 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On Galois connections and Soft Computing. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 224–235. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On the construction of fuzzy Galois connections. In: Proc. of XVII Spanish Conference on Fuzzy Logic and Technology, pp. 99–102 (2014)Google Scholar
  18. 18.
    García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodríguez, F.J.: Generating isotone Galois connections on an unstructured codomain. In: Proc. of Information Processing and Management of Uncertainty in Knowlegde-Based Systems (IPMU) (to appear, 2014)Google Scholar
  19. 19.
    García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodríguez-Sanchez, F.J.: On the Existence of Isotone Galois Connections between Preorders. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS, vol. 8478, pp. 67–79. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Georgescu, G., Popescu, A.: Non-commutative fuzzy Galois connections. Soft Computing 7(7), 458–467 (2003)zbMATHGoogle Scholar
  21. 21.
    Guo, L., Zhang, G.-Q., Li, Q.: Fuzzy closure systems on L-ordered sets. Mathematical Logic Quarterly 57(3), 281–291 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Järvinen, J.: Pawlak’s information systems in terms of Galois connections and functional dependencies. Fundamenta Informaticae 75, 315–330 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Konecny, J.: Isotone fuzzy Galois connections with hedges. Information Sciences 181(10), 1804–1817 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kuznetsov, S.: Galois connections in data analysis: Contributions from the soviet era and modern russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Li, F., Liu, Z.: Concewpt lattice based on the rough sets. Intl J. of Advanced Intelligence 1, 141–151 (2009)Google Scholar
  26. 26.
    Melton, A., Schmidt, D.A., Strecker, G.E.: Galois connections and computer science applications. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 299–312. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  27. 27.
    Mu, S.-C., Oliveira, J.: Programming from Galois connections. Journal of Logic and Algebraic Programming 81(6), 680–704 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Propp, J.: A Galois connection in the social network. Mathematics Magazine 85(1), 34–36 (2012)CrossRefzbMATHGoogle Scholar
  29. 29.
    Wolski, M.: Galois connections and data analysis. Fundamenta Informaticae 60, 401–415 (2004)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francisca García-Pardo
    • 1
  • Inma P. Cabrera
    • 1
  • Pablo Cordero
    • 1
  • Manuel Ojeda-Aciego
    • 1
  1. 1.Universidad de MálagaSpain

Personalised recommendations