Advertisement

Efficient Aggregate Farthest Neighbour Query Processing on Road Networks

  • Haozhou Wang
  • Kai Zheng
  • Han Su
  • Jiping Wang
  • Shazia Sadiq
  • Xiaofang Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8506)

Abstract

This paper addresses the problem of searching the k aggregate farthest neighbours (AkFN query in short) on road networks. Given a query point set, AkFN is aimed at finding the top-k points from a dataset with the largest aggregate network distance. The challenge of the AkFN query on the road network is how to reduce the number of network distance evaluation which is an expensive operation. In our work, we propose a three-phase solution, including clustering points in dataset, network distance bound pre-computing and searching. By organizing the objects into compact clusters and pre-calculating the network distance bound from clusters to a set of reference points, we can effectively prune a large fraction of clusters without probing each individual point inside. Finally, we demonstrate the efficiency of our proposed approaches by extensive experiments on a real Point- of-Interest (POI) dataset.

Keywords

Road Network Query Processing Road Segment Priority Queue Query Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network databases. In: PVLDB. VLD 2003, pp. 802–813 (2003)Google Scholar
  2. 2.
    Yiu, M., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks. TKDE 17(6), 820–833 (2005)Google Scholar
  3. 3.
    Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE, pp. 301–312 (2004)Google Scholar
  4. 4.
    Cheong, O., Su Shin, C., Vigneron, A.: Computing farthest neighbors on a convex polytope. Theoretical Computer Science 296(1), 47–58 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)CrossRefGoogle Scholar
  6. 6.
    Gao, Y., Shou, L., Chen, K., Chen, G.: Aggregate farthest-neighbor queries over spatial data. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 149–163. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD 1984, pp. 47–57 (1984)Google Scholar
  8. 8.
    Yiu, M.L., Mamoulis, N.: Clustering objects on a spatial network. In: SIGMOD 2004, pp. 443–454 (2004)Google Scholar
  9. 9.
    Jagadish, H.V., Ooi, B.C., Tan, K.L., Yu, C., Zhang, R.: idistance: An adaptive b+-tree based indexing method for nearest neighbor search. ACM Trans. Database Syst. 30(2), 364–397 (2005)CrossRefGoogle Scholar
  10. 10.
    Xu, H., Li, Z., Lu, Y., Deng, K., Zhou, X.: Group visible nearest neighbor queries in spatial databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 333–344. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Yao, B., Li, F., Kumar, P.: Reverse furthest neighbors in spatial databases. In: ICDE, pp. 664–675 (2009)Google Scholar
  12. 12.
    Tran, Q.T., Taniar, D., Safar, M.: Reverse k nearest neighbor and reverse farthest neighbor search on spatial networks. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) Trans. on Large-Scale Data- & Knowl.-Cent. Syst. I. LNCS, vol. 5740, pp. 353–372. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Haozhou Wang
    • 1
  • Kai Zheng
    • 1
  • Han Su
    • 1
  • Jiping Wang
    • 1
  • Shazia Sadiq
    • 1
  • Xiaofang Zhou
    • 1
  1. 1.School of ITEEThe University of QueenslandBrisbaneAustralia

Personalised recommendations