A Semantic Web Faceted Search System for Facilitating Building of Biodiversity and Ecosystems Services

  • Marie-Angélique Laporte
  • Isabelle Mougenot
  • Eric Garnier
  • Ulrike Stahl
  • Lutz Maicher
  • Jens Kattge
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8574)


To address biodiversity issues in ecology and to assess the consequences of ecosystem changes, large quantities of long-term observational data from multiple datasets need to be integrated and characterized in a unified way. Linked open data initiatives in ecology aim at promoting and sharing such observational data at the web-scale. Here we present a web infrastructure, named Thesauform, that fully exploits the key principles of the semantic web and associated key data standards in order to guide the scientific community of experts to collectively construct, manage, visualize and query a SKOS thesaurus. The study of a thesaurus dedicated to plant functional traits demonstrates the potential of this approach. A point of great interest is to provide each expert with the opportunity to generate new knowledge and to draw novel plausible conclusions from linked data sources. Consequently, it is required to consider both the scientific topic and the objects of interest for a community of expertise. The goal is to enable users to deal with a small number of familiar and conceptual dimensions, or in other terms, facets. In this regard, a faceted search system, based on SKOS collections and enabling thesaurus browsing according to each end-users requirements is expected to greatly enhance data discovery in the context of biodiversity studies.


Tool Faceted Search Thesaurus Semantic annotation Functional diversity Web of Data Plant Trait Controlled vocabulary Interoperability SKOS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michener, W.K., Jones, M.B.: Ecoinformatics: supporting ecology as a data-intensive science.. Trends in Ecology & Evolution 27(2), 85–93 (2012)CrossRefGoogle Scholar
  2. 2.
    Kattge, J., Ogle, K., Bonisch, G., Diaz, S., Lavorel, S., Madin, J., Nadrowski, K., Nollert, S., Sartor, K., Wirth, C.: A generic structure for plant trait databases. Methods in Ecology & Evolution (2010)Google Scholar
  3. 3.
    Isaac, A., Summers, E.: SKOS Simple Knowledge Organization System Primer. W3C Technical Report (2008)Google Scholar
  4. 4.
    Panzer, M., Zeng, M.L.: Modeling classification systems in skos: some challenges and best-practice recommendations. In: International Conference on Dublin Core and Metadata Applications, p. 3 (2009)Google Scholar
  5. 5.
    Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2rdf: Towards a mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics 41(5), 706–716 (2008); Semantic Mashup of Biomedical DataGoogle Scholar
  6. 6.
    Heath, T., Bizer, C.: Linked data: Evolving the web into a global data space. Synthesis Lectures on the Semantic Web: Theory and Technology 1(1), 1–136 (2011)CrossRefGoogle Scholar
  7. 7.
    Laporte, M.A., Garnier, E., et al.: Thesauform–traits: A web based collaborative tool to develop a thesaurus for plant functional diversity research. Ecological Informatics 11, 34–44 (2012)CrossRefGoogle Scholar
  8. 8.
    Kattge, J., DÍaz, S., Lavorel, S., Prentice, I., Leadley, P., et al.: TRY - a global database of plant traits. Global Change Biology 17 (2011)Google Scholar
  9. 9.
    Walls, R., Cooper, L., Elser, J., Stevenson, D.: The Plant Ontology: A Common Reference Ontology for Plants (2010),
  10. 10.
    Heim, P., Ertl, T., Ziegler, J.: Facet graphs: Complex semantic querying made easy. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 288–302. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Uddin, M.N., Janecek, P.: Faceted classification in web information architecture: A framework for using semantic web tools. The Electronic Library 25(2), 219–233 (2007)CrossRefGoogle Scholar
  12. 12.
    Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., Ping Yee, K.: Finding the flow in web site search. Commun. ACM (2002)Google Scholar
  13. 13.
    Brugman, H., Malaisé, V., Gazendam, L.: A web based general thesaurus browser to support indexing of television and radio programs. In: Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006), pp. 1488–1491 (2006)Google Scholar
  14. 14.
    Reichman, O.J., Jones, M.B., Schildhauer, M.P.: Challenges and Opportunities of Open Data in Ecology. Science 331(6018), 703–705 (2011)CrossRefGoogle Scholar
  15. 15.
    Catapano, T., Hobern, D., Lapp, H., Morris, R.A., Morrison, N., Noy, N., Schildhauer, M., Thau, D.: Recommendations for the Use of Knowledge Organisation Systems by GBIF. Global Biodiversity (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marie-Angélique Laporte
    • 1
  • Isabelle Mougenot
    • 2
  • Eric Garnier
    • 3
  • Ulrike Stahl
    • 1
    • 4
  • Lutz Maicher
    • 1
    • 5
  • Jens Kattge
    • 1
    • 4
  1. 1.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  2. 2.UMR 228 ESPACE-DEV, Maison de la TélédétectionMontpellierFrance
  3. 3.Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175)Montpellier Cedex 5France
  4. 4.Functional Biogeography Research GroupMax Planck Institute for BiogeochemistryJenaGermany
  5. 5.Fraunhofer-Zentrum für Mittel- und Osteuropa (MOEZ)LeipzigGermany

Personalised recommendations