Unified Classical Logic Completeness
- 14 Citations
- 740 Downloads
Abstract
Codatatypes are absent from many programming and specification languages. We make a case for their importance by revisiting a classical result: the completeness theorem for first-order logic established through a Gentzen system. The core of the proof establishes an abstract property of possibly infinite derivation trees, independently of the concrete syntax or inference rules. This separation of concerns simplifies the presentation. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems as well as various flavors of first-order logic. The corresponding Isabelle/HOL formalization demonstrates the recently introduced support for codatatypes and the Haskell code generator.
Keywords
Proof System Proof Theory Completeness Theorem Derivation Tree Rule SystemPreview
Unable to display preview. Download preview PDF.
References
- 1.Bell, J.L., Machover, M.: A Course in Mathematical Logic. North-Holland (1977)Google Scholar
- 2.Berghofer, S.: First-order logic according to Fitting. In: Klein, G., Nipkow, T., Paulson, L. (eds.) Archive of Formal Proofs (2007), http://afp.sf.net/entries/FOL-Fitting.shtml
- 3.Bertot, Y.: Filters on coinductive streams, an application to Eratosthenes’ sieve. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 102–115. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 4.Blanchette, J.C., Popescu, A.: Mechanizing the metatheory of Sledgehammer. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 245–260. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 5.Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, Springer (2014)Google Scholar
- 6.Blanchette, J.C., Popescu, A., Traytel, D.: Abstract completeness. In: Klein, G., Nipkow, T., Paulson, L. (eds.) Archive of Formal Proofs (2014), http://afp.sf.net/entries/Abstract_Completeness.shtml
- 7.Blanchette, J.C., Popescu, A., Traytel, D.: Formal development associated with this paper (2014), http://www21.in.tum.de/~traytel/compl_devel.zip
- 8.Ciaffaglione, A., Gianantonio, P.D.: A certified, corecursive implementation of exact real numbers. Theor. Comput. Sci. 351(1), 39–51 (2006)CrossRefzbMATHGoogle Scholar
- 9.Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Graduate Texts in Computer Science. Springer (1996)Google Scholar
- 10.Francez, N.: Fairness. Texts and Monographs in Computer Science, Springer (1986)Google Scholar
- 11.Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Computer Science and Technology. Harper & Row (1986)Google Scholar
- 12.Gödel, K.: Über die Vollständigkeit des Logikkalküls. Ph.D. thesis, Universität Wien (1929)Google Scholar
- 13.Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press (1993)Google Scholar
- 14.Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 15.Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 100–178. Elsevier (2001)Google Scholar
- 16.Harrison, J.: Formalizing basic first order model theory. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 153–170. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 17.Ilik, D.: Constructive Completeness Proofs and Delimited Control. Ph.D. thesis, École Polytechnique (2010)Google Scholar
- 18.Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bull. Eur. Assoc. Theor. Comput. Sci. 62, 222–259 (1997)zbMATHGoogle Scholar
- 19.Kaplan, D.: Review of Kripke (1959) [21]. J. Symb. Log. 31(1966), 120–122 (1966)Google Scholar
- 20.Kleene, S.C.: Mathematical Logic. John Wiley & Sons (1967)Google Scholar
- 21.Kripke, S.: A completeness theorem in modal logic. J. Symb. Log. 24(1), 1–14 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
- 22.Krivine, J.L.: Une preuve formelle et intuitionniste du théorème de complétude de la logique classique. Bull. Symb. Log. 2(4), 405–421 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
- 23.Margetson, J., Ridge, T.: Completeness theorem. In: Klein, G., Nipkow, T., Paulson, L. (eds.) Archive of Formal Proofs (2004), http://afp.sf.net/entries/Completeness.shtml
- 24.Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theor. Comput. Sci. 192(1), 3–29 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
- 25.Nakata, K., Uustalu, T., Bezem, M.: A proof pearl with the fan theorem and bar induction: Walking through infinite trees with mixed induction and coinduction. In: Yang, H. (ed.) APLAS 2011. LNCS, vol. 7078, pp. 353–368. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 26.Negri, S.: Kripke completeness revisited. In: Primiero, G., Rahman, S. (eds.) Acts of Knowledge: History, Philosophy and Logic: Essays Dedicated to Göran Sundholm, pp. 247–282. College Publications (2009)Google Scholar
- 27.Nipkow, T., Klein, G.: Concrete Semantics: A Proof Assistant Approach. Springer (to appear), http://www.in.tum.de/~nipkow/Concrete-Semantics
- 28.Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
- 29.Pfenning, F.: Review of “Jean H. Gallier: Logic for Computer Science. J. Symb. Log. 54(1), 288–289 (1989)CrossRefGoogle Scholar
- 30.Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 294–309. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 31.Roşu, G.: Equality of streams is a \(\Pi_2^0\)-complete problem. In: Reppy, J.H., Lawall, J.L. (eds.) ICFP 2006. ACM (2006)Google Scholar
- 32.Roşu, G.: An effective algorithm for the membership problem for extended regular expressions. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 332–345. Springer, Heidelberg (2007)Google Scholar
- 33.Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer, Heidelberg (1998)CrossRefGoogle Scholar
- 34.Rutten, J.J.M.M.: Regular expressions revisited: A coinductive approach to streams, automata, and power series. In: Backhouse, R., Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 100–101. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 35.Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduction). Electr. Notes Theor. Comput. Sci. 45, 358–423 (2001)CrossRefGoogle Scholar
- 36.Schlöder, J.J., Koepke, P.: The Gödel completeness theorem for uncountable languages. Formalized Mathematics 20(3), 199–203 (2012)zbMATHGoogle Scholar
- 37.Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University Press (2000)Google Scholar