Advertisement

The Bayesian Description Logic \({\mathcal{BEL}}\)

  • İsmail İlkan Ceylan
  • Rafael Peñaloza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)

Abstract

We introduce the probabilistic Description Logic \({\mathcal{BEL}}\). In \({\mathcal{BEL}}\), axioms are required to hold only in an associated context. The probabilistic component of the logic is given by a Bayesian network that describes the joint probability distribution of the contexts. We study the main reasoning problems in this logic; in particular, we (i) prove that deciding positive and almost-sure entailments is not harder for \({\mathcal{BEL}}\) than for the BN, and (ii) show how to compute the probability, and the most likely context for a consequence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Proc. 18th International Joint Conference on Artificial Intelligence (IJCAI 2003), pp. 325–330. Morgan Kaufmann (2003)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
  3. 3.
    Baader, F., Knechtel, M., Peñaloza, R.: A generic approach for large-scale ontological reasoning in the presence of access restrictions to the ontology’s axioms. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 49–64. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and consequences of semantic web ontologies. J. of Web Semantics, 12–13, 22–40 (2012)Google Scholar
  5. 5.
    Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. of Automated Reasoning 45(2), 91–129 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. of Logic and Computation 20(1), 5–34 (2010)CrossRefzbMATHGoogle Scholar
  7. 7.
    Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\mathcal{EL}^+\). In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 52–67. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Brandt, S.: Polynomial time reasoning in a description logic with existential restrictions, GCI axioms, and—what else? In: Proc. 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 298–302. IOS Press (2004)Google Scholar
  9. 9.
    Ceylan, İ.İ.: Context-Sensitive Bayesian Description Logics. Master’s thesis, Dresden University of Technology, Germany (2013)Google Scholar
  10. 10.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971), http://doi.acm.org/10.1145/800157.805047 CrossRefGoogle Scholar
  11. 11.
    Cooper, G.F.: The computational complexity of probabilistic inference using bayesian belief networks (research note). Artif. Intel. 42(2-3), 393–405 (1990)CrossRefzbMATHGoogle Scholar
  12. 12.
    da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: Pr-owl: A bayesian ontology language for the semantic web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 88–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with bayesian description logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 146–159. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press (2009)Google Scholar
  15. 15.
    Downey, R.G., Fellows, M.: Parameterized Complexity. Monographs in Computer Science. Springer (1999)Google Scholar
  16. 16.
    Koller, D., Levy, A.Y., Pfeffer, A.: P-classic: A tractable probablistic description logic. In: Proc. 14th National Conference on Artificial Intelligence (AAAI 1997), pp. 390–397. AAAI Press (1997)Google Scholar
  17. 17.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. of Web Semantics 6(4), 291–308 (2008)CrossRefGoogle Scholar
  18. 18.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic ontologies. In: Proc. 8th Int. Workshop on Uncertainty Reasoning for the Semantic Web (URSW 2012), vol. 900, pp. 3–14. CEUR-WS (2012)Google Scholar
  19. 19.
    Roth, D.: On the hardness of approximate reasoning. Artif. Intel. 82(1-2), 273–302 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • İsmail İlkan Ceylan
    • 1
  • Rafael Peñaloza
    • 1
    • 2
  1. 1.Theoretical Computer ScienceTU DresdenGermany
  2. 2.Center for Advancing Electronics DresdenGermany

Personalised recommendations