Advertisement

The Complexity of Theorem Proving in Circumscription and Minimal Entailment

  • Olaf Beyersdorff
  • Leroy Chew
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)

Abstract

We provide the first comprehensive proof-complexity analysis of different proof systems for propositional circumscription. In particular, we investigate two sequent-style calculi: MLK defined by Olivetti [28] and CIRC introduced by Bonatti and Olivetti [8], and the tableaux calculus NTAB suggested by Niemelä [26]. In our analysis we obtain exponential lower bounds for the proof size in NTAB and CIRC and show a polynomial simulation of CIRC by MLK. This yields a chain NTAB <  p CIRC <  p MLK of proof systems for circumscription of strictly increasing strength with respect to lengths of proofs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyersdorff, O.: The complexity of theorem proving in autoepistemic logic. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 365–376. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Beyersdorff, O., Galesi, N., Lauria, M.: A lower bound for the pigeonhole principle in tree-like resolution by asymmetric prover-delayer games. Inf. Process. Lett. 110(23), 1074–1077 (2010)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Beyersdorff, O., Köbler, J., Messner, J.: Nondeterministic functions and the existence of optimal proof systems. Theor. Comput. Sci. 410(38-40), 3839–3855 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Beyersdorff, O., Kutz, O.: Proof complexity of non-classical logics. In: Bezhanishvili, N., Goranko, V. (eds.) ESSLLI 2010/2011, Lectures. LNCS, vol. 7388, pp. 1–54. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Beyersdorff, O., Meier, A., Müller, S., Thomas, M., Vollmer, H.: Proof complexity of propositional default logic. Archive for Mathematical Logic 50(7), 727–742 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bonatti, P.A.: A Gentzen system for non-theorems. Technical Report CD/TR 93/52, Christian Doppler Labor für Expertensysteme (1993)Google Scholar
  7. 7.
    Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in DLs. J. Artif. Intell. Res (JAIR) 35, 717–773 (2009)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bonatti, P.A., Olivetti, N.: Sequent calculi for propositional nonmonotonic logics. ACM Transactions on Computational Logic 3(2), 226–278 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems. SIAM Journal on Computing 29(6), 1939–1967 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. The Journal of Symbolic Logic 52, 916–927 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Cadoli, M., Lenzerini, M.: The complexity of propositional closed world reasoning and circumscription. J. Comput. Syst. Sci. 48(2), 255–310 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Durand, A., Hermann, M., Nordh, G.: Trichotomies in the complexity of minimal inference. Theory Comput. Syst. 50(3), 446–491 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Egly, U., Tompits, H.: Proof-complexity results for nonmonotonic reasoning. ACM Transactions on Computational Logic 2(3), 340–387 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Eiter, T., Gottlob, G.: Propositional circumscription and extended closed world reasoning are \(\Pi_2^p\)-complete. Theor. Comput. Sci. 114(2), 231–245 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Fenner, S.A., Fortnow, L., Naik, A.V., Rogers, J.D.: Inverting onto functions. Information and Computation 186(1), 90–103 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 68–131 (1935)Google Scholar
  19. 19.
    Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hrubeš, P.: On lengths of proofs in non-classical logics. Annals of Pure and Applied Logic 157(2-3), 194–205 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Janota, M., Marques-Silva, J.: cmMUS: A tool for circumscription-based MUS membership testing. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 266–271. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Jeřábek, E.: Substitution Frege and extended Frege proof systems in non-classical logics. Annals of Pure and Applied Logic 159(1-2), 1–48 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge University Press (1995)Google Scholar
  24. 24.
    McCarthy, J.: Circumscription – a form of non-monotonic reasoning. Artificial Intelligence 13, 27–39 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Niemelä, I.: Implementing circumscription using a tableau method. In: ECAI, pp. 80–84 (1996)Google Scholar
  26. 26.
    Niemelä, I.: A tableau calculus for minimal model reasoning. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 278–294. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  27. 27.
    Nieuwenhuis, R.: SAT and SMT are still resolution: Questions and challenges. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 10–13. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Olivetti, N.: Tableaux and sequent calculus for minimal entailment. J. Autom. Reasoning 9(1), 99–139 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Thomas, M.: The complexity of circumscriptive inference in Post’s lattice. Theory of Computing Systems 50(3), 401–419 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Tiomkin, M.L.: Proving unprovability. In: Proc. 3rd Annual Symposium on Logic in Computer Science, pp. 22–26 (1988)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Olaf Beyersdorff
    • 1
  • Leroy Chew
    • 1
  1. 1.School of ComputingUniversity of LeedsUK

Personalised recommendations