Approximations for Model Construction

  • Aleksandar Zeljić
  • Christoph M. Wintersteiger
  • Philipp Rümmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)

Abstract

We consider the problem of efficiently computing models for satisfiable constraints, in the presence of complex background theories such as floating-point arithmetic. Model construction has various applications, for instance the automatic generation of test inputs. It is well-known that naive encoding of constraints into simpler theories (for instance, bit-vectors or propositional logic) can lead to a drastic increase in size, and be unsatisfactory in terms of memory and runtime needed for model construction. We define a framework for systematic application of approximations in order to speed up model construction. Our method is more general than previous techniques in the sense that approximations that are neither under- nor over-approximations can be used, and shows promising results in practice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boldo, S., Filliâtre, J.-C., Melquiond, G.: Combining Coq and Gappa for certifying floating-point programs. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) MKM 2009, Held as Part of CICM 2009. LNCS, vol. 5625, pp. 59–74. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-point logic with abstract conflict driven clause learning. In: FMSD (2013)Google Scholar
  3. 3.
    Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arithmetic. In: FMCAD. IEEE (2009)Google Scholar
  4. 4.
    Brummayer, R., Biere, A.: Effective bit-width and under-approximation. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 304–311. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.A.: Deciding bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 358–372. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Daumas, M., Melquiond, G.: Certification of bounds on expressions involving rounded operators. ACM Trans. Math. Softw. 37(1) (2010)Google Scholar
  10. 10.
    D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: POPL. ACM (2013)Google Scholar
  11. 11.
    D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with conflict-driven learning. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 48–63. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 208–214. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiability modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Giunchiglia, F., Walsh, T.: A theory of abstraction. Artif. Intell. 57(2-3) (1992)Google Scholar
  15. 15.
    Harrison, J.: Floating point verification in HOL Light: the exponential function. TR 428, University of Cambridge Computer Laboratory (1997), available on the Web as http://www.cl.cam.ac.uk/~jrh13/papers/tang.html
  16. 16.
    Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press (2009)Google Scholar
  17. 17.
    IEEE Comp. Soc.: IEEE Standard for Floating-Point Arithmetic 754-2008 (2008)Google Scholar
  18. 18.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Khanh, T.V., Ogawa, M.: SMT for polynomial constraints on real numbers. In: TAPAS. Electronic Notes in Theoretical Computer Science, vol. 289 (2012)Google Scholar
  20. 20.
    Lapschies, F., Peleska, J., Gorbachuk, E., Mangels, T.: SONOLAR SMT-solver. In: Satisfiability Modulo Theories Competition; System Description (2012)Google Scholar
  21. 21.
    Melquiond, G.: Floating-point arithmetic in the Coq system. In: Conf. on Real Numbers and Computers. Information & Computation, vol. 216. Elsevier (2012)Google Scholar
  22. 22.
    de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aleksandar Zeljić
    • 1
  • Christoph M. Wintersteiger
    • 2
  • Philipp Rümmer
    • 1
  1. 1.Uppsala UniversitySweden
  2. 2.Microsoft ResearchUK

Personalised recommendations