Axioms vs Hypersequent Rules with Context Restrictions: Theory and Applications

  • Björn Lellmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)


We introduce transformations between hypersequent rules with context restrictions and Hilbert axioms extending classical (and intuitionistic) propositional logic and vice versa. The introduced rules are used to prove uniform cut elimination, decidability and complexity results as well as finite axiomatisations for many modal logics given by simple frame properties. Our work subsumes many logic-tailored results and allows for new results. As a case study we apply our methods to the logic of uniform deontic frames.


Modal Logic Principal Part Sequent Calculus Rule Application Context Restriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In: Logic: From Foundations to Applications. Clarendon (1996)Google Scholar
  2. 2.
    Avron, A., Lev, I.: Canonical propositional Gentzen-type systems. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 529–544. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Belnap, N.D.: Display logic. J. Philos. Logic 11, 375–417 (1982)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge (2001)Google Scholar
  5. 5.
    Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: LICS 2008, pp. 229–240. IEEE Computer Society (2008)Google Scholar
  6. 6.
    Gratzl, N.: Sequent calculi for multi-modal logic with interaction. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI. LNCS, vol. 8196, pp. 124–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Indrzejczak, A.: Cut-free hypersequent calculus for S4.3. Bull. Sec. Log. 41, 89–104 (2012)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Lahav, O.: From frame properties to hypersequent rules in modal logics. In: LICS 2013. IEEE Computer Society (2013)Google Scholar
  9. 9.
    Lellmann, B.: Sequent Calculi with Context Restrictions and Applications to Conditional Logic. Ph.D. thesis, Imperial College London (2013)Google Scholar
  10. 10.
    Lellmann, B., Pattinson, D.: Correspondence between modal Hilbert axioms and sequent rules with an application to S5. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 219–233. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Ohlbach, H.J.: Logic engineering: Konstruktion von Logiken. KI 3, 34–38 (1992)Google Scholar
  12. 12.
    Poggiolesi, F.: A cut-free simple sequent calculus for modal logic S5. Rev. Symb. Log. 1(1), 3–15 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Roy, O., Anglberger, A.J., Gratzl, N.: The logic of obligation as weakest permission. In: Ågotnes, T., Broersen, J., Elgesem, D. (eds.) DEON 2012. LNCS (LNAI), vol. 7393, pp. 139–150. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Algebr. Program. 73(1-2), 97–110 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Björn Lellmann
    • 1
  1. 1.TU ViennaViennaAustria

Personalised recommendations