dTL2: Differential Temporal Dynamic Logic with Nested Temporalities for Hybrid Systems

  • Jean-Baptiste Jeannin
  • André Platzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)

Abstract

The differential temporal dynamic logic dTL2 is a logic to specify temporal properties of hybrid systems. It combines differential dynamic logic with temporal logic to reason about the intermediate states reached by a hybrid system. The logic dTL2 supports some linear time temporal properties of LTL. It extends differential temporal dynamic logic dTL with nested temporalities. We provide a semantics and a proof system for the logic dTL2, and show its usefulness for nontrivial temporal properties of hybrid systems. We take particular care to handle the case of alternating universal dynamic and existential temporal modalities and its dual, solving an open problem formulated in previous work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckert, B., Schlager, S.: A sequent calculus for first-order dynamic logic with trace modalities. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 626–641. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bresolin, D.: HyLTL: a temporal logic for model checking hybrid systems. In: Bortolussi, L., Bujorianu, M.L., Pola, G. (eds.) HAS. EPTCS, vol. 124, pp. 73–84 (2013)Google Scholar
  3. 3.
    Cimatti, A., Roveri, M., Tonetta, S.: Requirements validation for hybrid systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 188–203. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Davoren, J.M., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for general flow systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 280–295. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proc. IEEE (2000)Google Scholar
  6. 6.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Harel, D., Kozen, D., Parikh, R.: Process logic: Expressiveness, decidability, completeness. J. Comput. Syst. Sci. 25(2), 144–170 (1982)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)MATHGoogle Scholar
  9. 9.
    Hughes, G., Cresswell, M.: A New Introduction to Modal Logic. Routledge (1996)Google Scholar
  10. 10.
    Jeannin, J.B., Platzer, A.: dTL2: Differential temporal dynamic logic with nested temporalities for hybrid systems. Tech. Rep. CMU-CS-14-109, School of Computer Science. Carnegie Mellon University, Pittsburgh, PA, 15213 (May 2014), http://reports-archive.adm.cs.cmu.edu/anon/2013/abstracts/14-109.html
  11. 11.
    Mysore, V., Piazza, C., Mishra, B.: Algorithmic algebraic model checking II: Decidability of semi-algebraic model checking and its applications to systems biology. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 217–233. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Nishimura, H.: Descriptively complete process logic. Acta Inf. 14, 359–369 (1980)CrossRefMATHGoogle Scholar
  13. 13.
    Parikh, R.: A decidability result for a second order process logic. In: FOCS, pp. 177–183. IEEE Comp. Soc. (1978)Google Scholar
  14. 14.
    Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In: Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 457–471. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)Google Scholar
  18. 18.
    Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Comp. Soc. (1977)Google Scholar
  20. 20.
    Pratt, V.R.: Process logic. In: Aho, A.V., Zilles, S.N., Rosen, B.K. (eds.) POPL, pp. 93–100. ACM (1979)Google Scholar
  21. 21.
    Zhou, C., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jean-Baptiste Jeannin
    • 1
  • André Platzer
    • 1
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations