Advertisement

A History-Based Theorem Prover for Intuitionistic Propositional Logic Using Global Caching: IntHistGC System Description

  • Rajeev Goré
  • Jimmy Thomson
  • Jesse Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)

Abstract

We describe an implementation of a new theorem prover for Intuitionistic Propositional Logic based on a sequent calculus with histories due to Corsi and Tassi. The main novelty of the prover lies in its use of dependency directed backtracking for global caching. We analyse the performance of the prover, and various optimisations, in comparison to current state of the art theorem provers and show that it produces competitive results on many classes of formulae.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log. 57, 795–807 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Howe, J.M.: Two loop detection mechanisms: A comparison. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 188–200. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U., Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Corsi, G., Tassi, G.: Intuitionistic logic freed of all metarules. J. Symb. Log. 72, 1204–1218 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Goré, R., Thomson, J.: BDD-based automated reasoning for propositional bi-intuitionistic tense logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 301–315. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Ferrari, M., Fiorentini, C., Fiorino, G.: fCube: An efficient prover for intuitionistic propositional logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 294–301. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    McLaughlin, S., Pfenning, F.: Imogen: Focusing the polarized inverse method for intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Goré, R., Nguyen, L.A.: Exptime tableaux for ALC using sound global caching. J. Autom. Reasoning 50, 355–381 (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 187–201. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Savnik, I.: Index data structure for fast subset and superset queries. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 134–148. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic. J. Autom. Reasoning 38, 261–271 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fiorentini, C.: All intermediate logics with extra axioms in one variable, except eight, are not strongly ω-complete. J. Symb. Log. 65, 1576–1604 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Ferrari, M., Fiorentini, C., Fiorino, G.: Simplification rules for intuitionistic propositional tableaux. ACM Trans. Comput. Log. 13, 14 (2012)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rajeev Goré
    • 1
  • Jimmy Thomson
    • 1
  • Jesse Wu
    • 1
  1. 1.Research School of Computer ScienceThe Australian National UniversityCanberraAustralia

Personalised recommendations