Finite Quantification in Hierarchic Theorem Proving

  • Peter Baumgartner
  • Joshua Bax
  • Uwe Waldmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)

Abstract

Many applications of automated deduction require reasoning in first-order logic modulo background theories, in particular some form of integer arithmetic. A major unsolved research challenge is to design theorem provers that are “reasonably complete” even in the presence of free function symbols ranging into a background theory sort. In this paper we consider the case when all variables occurring below such function symbols are quantified over a finite subset of their domains. We present a non-naive decision procedure for background theories extended this way on top of black-box decision procedures for the EA-fragment of the background theory. In its core, it employs a model-guided instantiation strategy for obtaining pure background formulas that are equi-satisfiable with the original formula. Unlike traditional finite model finders, it avoids exhaustive instantiation and, hence, is expected to scale better with the size of the domains. Our main results in this paper are a correctness proof and first experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 84–99. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput 5, 193–212 (1994)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. Journal of Applied Logic 7(1), 58–74 (2009)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Baumgartner, P., Tinelli, C.: Model evolution with equality modulo built-in theories. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 85–100. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition: Completeness without compactness. In: Kosta, M., Sturm, T. (eds.) MACIS (2013)Google Scholar
  7. 7.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model building. In: Baumgartner, P., Fermüller, C.G. (eds.) CADE-19 Workshop: Model Computation – Principles, Algorithms, Applications (2003)Google Scholar
  9. 9.
    Ganzinger, H., Korovin, K.: Theory instantiation. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 497–511. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Ge, Y., Barrett, C.W., Tinelli, C.: Solving quantified verification conditions using satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 167–182. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Halpern, J.: Presburger Arithmetic With Unary Predicates is \(\Pi_1^1\)-Complete. Journal of Symbolic Logic 56(2), 637–642 (1991)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Korovin, K., Voronkov, A.: Integrating linear arithmetic into superposition calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 223–237. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over ground theories. In: Mathematics in Computer Science, pp. 1–30 (2012)Google Scholar
  15. 15.
    McCune, W.: Mace4 reference manual and guide. Technical Report ANL/MCS-TM-264, Argonne National Laboratory (2003)Google Scholar
  16. 16.
    de Moura, L., Bjørner, N.S.: Efficient E-matching for SMT solvers. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), 937–977 (2006)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Slaney, J.: Finder (finite domain enumerator): Notes and guide. Technical Report TR-ARP-1/92, Australian National University, Automated Reasoning Project, Canberra (1992)Google Scholar
  23. 23.
    Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Mellish, C. (ed.) IJCAI 1995. Morgan Kaufmann (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter Baumgartner
    • 1
  • Joshua Bax
    • 1
  • Uwe Waldmann
    • 2
  1. 1.NICTA and Australian National UniversityCanberraAustralia
  2. 2.MPI für InformatikSaarbrückenGermany

Personalised recommendations