Advertisement

From Reachability to Temporal Specifications in Cost-Sharing Games

  • Guy Avni
  • Orna Kupferman
  • Tami Tamir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8562)

Abstract

Multi-agents cost-sharing games are commonly used for modeling settings in which different entities share resources. For example, the setting in which entities need to route messages in a network is modeled by a network-formation game: the network is modeled by a graph, and each agent has to select a path satisfying his reachability objective. In practice, the objectives of the entities are often more involved than reachability. The need to specify and reason about rich specifications has been extensively studied in the context of verification and synthesis of reactive systems. This paper suggests and analyzes a generalization of cost-sharing games that captures such rich specifications. In particular, we study network-formation games with regular objectives. In these games, the edges of the graph are labeled by alphabet letters and the objective of each player is a regular language over the alphabet of labels. Thus, beyond reachability, a player may restrict attention to paths that satisfy certain properties, referring, for example, to the providers of the traversed edges, the actions associated with them, their quality of service, or security. Our results show that the transition to regular objectives makes the game considerably less stable.

Keywords

Nash Equilibrium Regular Language Social Optimum Congestion Game Pure Nash Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S., Elits, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash Equilibria for a Network Creation Game. In: Proc. 17th SODA, pp. 89–98 (2006)Google Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The Price of Stability for Network Design with Fair Cost Allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49(5), 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with weighted automata. ACM Transactions on Algorithms 6(2) (2010)Google Scholar
  5. 5.
    Avni, G., Kupferman, O., Tamir, T.: Network-formation games with regular objectives. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 119–133. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Computing 2, 117–126 (1987)CrossRefzbMATHGoogle Scholar
  7. 7.
    Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: On subgame perfection in quantitative reachability games. Logical Methods in Computer Science 9(1) (2012)Google Scholar
  8. 8.
    Chatterjee, K.: Nash equilibrium for upward-closed objectives. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 271–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theoretical Computer Science 365(1-2), 67–82 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 59–73. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Chatterjee, K., Majumdar, R., Jurdziński, M.: On Nash equilibria in stochastic games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 26–40. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Chen, H., Roughgarden, T.: Network Design with Weighted Players. Theory of Computing Systems 45(2), 302–324 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish Routing in Capacitated Networks. Mathematics of Operations Research 29, 961–976 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Springer (2009)Google Scholar
  16. 16.
    Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  17. 17.
    Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 190–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a network creation game. In: Proc. 22nd PODC, pp. 347–351 (2003)Google Scholar
  19. 19.
    Feldman, M., Tamir, T.: Conflicting Congestion Effects in Resource Allocation Games. Journal of Operations Research 60(3), 529–540 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    von Falkenhausen, P., Harks, T.: Optimal Cost Sharing Protocols for Scheduling Games. In: Proc. 12th EC, pp. 285–294 (2011)Google Scholar
  21. 21.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The Complexity of Pure Nash Equilibria. In: Proc. 36th STOC, pp. 604–612 (2004)Google Scholar
  22. 22.
    de Giacomo, G., Vardi, M.Y.: Automata-Theoretic Approach to Planning for Temporally Extended Goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 226–238. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Harel, D., Pnueli, A.: On the development of reactive systems. In: LMCS. NATO Advanced Summer Institutes, vol. F-13, pp. 477–498. Springer (1985)Google Scholar
  24. 24.
    Herzog, S., Shenker, S., Estrin, D.: Sharing the “Cost” of Multicast Trees: An Axiomatic Analysis. IEEE/ACM Transactions on Networking (1997)Google Scholar
  25. 25.
    Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. Computer Science Review 3(2), 65–69 (2009)CrossRefGoogle Scholar
  26. 26.
    Kupferman, O., Tamir, T.: Coping with selfish on-going behaviors. Information and Computation 210, 1–12 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion Games with Player-specific Constants. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 633–644. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Milchtaich, I.: Weighted Congestion Games With Separable Preferences. Games and Economic Behavior 67, 750–757 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Mohri, M.: Finite-state transducers in language and speech processing. Computational Linguistics 23(2), 269–311 (1997)MathSciNetGoogle Scholar
  30. 30.
    Monderer, D., Shapley, L.: Potential Games. Games and Economic Behavior 14, 124–143 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Moulin, H., Shenker, S.: Strategyproof Sharing of Submodular Costs: Budget Balance Versus Efficiency. Journal of Economic Theory 18, 511–533 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  33. 33.
    Nerode, A., Yakhnis, A., Yakhnis, V.: Concurrent programs as strategies in games. In: Proc. Logic from Computer Science, pp. 405–480 (1992)Google Scholar
  34. 34.
    Papadimitriou, C.: Algorithms, games, and the internet (Extended abstract). In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 1–3. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  35. 35.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Automata, Languages and Programming, vol. 372, pp. 652–671. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  36. 36.
    Paes Leme, R., Syrgkanis, V., Tardos, E.: The curse of simultaneity. In: Innovations in Theoretical Computer Science (ITCS), pp. 60–67 (2012)Google Scholar
  37. 37.
    Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous Connections and Onion Routing. IEEE J. on SAC, Issue on Copyright and Privacy Protection (1998)Google Scholar
  38. 38.
    Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Computer and Systems Science 29, 274–301 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Tardos, E., Wexler, T.: Network Formation Games and the Potential Function Method. In: Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  41. 41.
    Vöcking, B.: In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory: Selfish Load Balancing, ch. 20. Cambridge University Press (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guy Avni
    • 1
  • Orna Kupferman
    • 1
  • Tami Tamir
    • 2
  1. 1.School of Computer Science and EngineeringThe Hebrew UniversityJerusalemIsrael
  2. 2.School of Computer ScienceThe Interdisciplinary CenterHerzliyaIsrael

Personalised recommendations