Bacillus, A Plant-Beneficial Bacterium

  • Rainer Borriss


Plant growth promotion and biocontrol of plant pathogens are features of Bacillus inoculants applied for a more sustainable agriculture. Recent results mainly obtained with Bacillus amyloliquefaciens FZB42 and other representatives of the B. amyloliquefaciens plantarum subspecies support the hypothesis that stimulation of plant induced systemic resistance (ISR) by bacterial metabolites produced in the vicinity of plant roots is the key mechanism in the biocontrol action of Gram-positive endospore-forming bacteria, whereas a direct effect of the numerous antimicrobial metabolites in suppressing pathogens in the vicinity of plant roots seems to be of minor importance.


Root Colonization Induce Systemic Resistance Lettuce Plant Stimulate Plant Growth Bayer Crop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arguelles Arias A, Ongena M, Devreese B et al (2014) Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS One 8(12): e83037. doi:10.1371/journal.pone.0083037CrossRefGoogle Scholar
  2. Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents, In: Maheshwari DK (ed). Bacteria in agrobiology: plant growth responses. Springer, Germany, pp 41–76CrossRefGoogle Scholar
  3. Borriss R (2013) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42 In: de Brujn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley-Blackwell, Hoboken, pp 883–898CrossRefGoogle Scholar
  4. Borriss R, Chen XH, Rueckert C et al (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int J Syst Evol Microbiol 61:1786–1801CrossRefPubMedGoogle Scholar
  5. Budiharjo A, Chowdhury SP, Dietel K et al (2014) Transposon mutagenesis of the plant-associated Bacillus amyloliquefaciens ssp. plantarum FZB42 revealed that the nfrA and the RBAM17410 genes are involved in plant-microbe interactions. PLoS One 9(5): e98267. doi:10.1371/journal.pone.0098267CrossRefPubMedCentralPubMedGoogle Scholar
  6. Chen XH, Koumoutsi A, Scholz R et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014CrossRefPubMedGoogle Scholar
  7. Chen XH, Koumoutsi A, Scholz R et al (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 140:27–37CrossRefPubMedGoogle Scholar
  8. Chowdhury SP, Dietel K, Rändler M et al (2013) Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS One 8(7):e68818. doi: 10.1371CrossRefPubMedCentralPubMedGoogle Scholar
  9. Debois D, Jourdan E, Smargiasso N et al (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 86(9):4431–4438 doi: 10.1021/ac500290sCrossRefGoogle Scholar
  10. Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243CrossRefGoogle Scholar
  11. Erlacher A, Cardinale M, Grosch R et al (2014) The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5:175. doi: 10.3389/fmicb.2014.00175CrossRefPubMedCentralPubMedGoogle Scholar
  12. Fan B, Chen XH, Budiharjo A et al (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J Biotechnol 151: 303–311CrossRefPubMedGoogle Scholar
  13. Herzner AM, Dischinger J, Szekat C et al (2011) Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS One 6(7): e22389. doi:10.1371/journal.pone.0022389CrossRefPubMedCentralPubMedGoogle Scholar
  14. Idriss, EES, Makarewicz O, Farouk A et al (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB 45 contributes to its plant growth-promoting effect. Microbiology 148:2097–2109PubMedGoogle Scholar
  15. Idris EES, Iglesias DJ, Talon M et al (2007) Tryptophan dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626CrossRefPubMedGoogle Scholar
  16. Kröber M, Wibberg D, Grosch R et al (2014) Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol 5:252 doi: 10.3389/fmicb.2014.00252PubMedCentralPubMedGoogle Scholar
  17. Li J, Jensen SE (2008) Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid. Chem Biol 15: 118–127CrossRefPubMedGoogle Scholar
  18. Liu Z, Budiharjo A, Wang Pet et al (2013) The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol 97:10081–90CrossRefPubMedGoogle Scholar
  19. Niu B, Vater J, Rueckert C (2013) Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiology 13:137CrossRefPubMedCentralPubMedGoogle Scholar
  20. Raaijmakers J, De Bruin I, Nybroe O et al (2010) Natural functions of cyclic lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062PubMedGoogle Scholar
  21. Scholz R, Molohon KJ, Nachtigall J et al (2011) Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol 193:215–224.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Scholz R, Vater J, Budiharjo A et al (2014) Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol 196:1842–1852CrossRefPubMedCentralPubMedGoogle Scholar
  23. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857CrossRefPubMedGoogle Scholar
  24. Talboys PJ, Owen DW, Healey JR et al (2014) Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol 14:51CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ABiTEP GmbHBerlinGermany

Personalised recommendations