Advertisement

A Predictive Differentially-Private Mechanism for Mobility Traces

  • Konstantinos Chatzikokolakis
  • Catuscia Palamidessi
  • Marco Stronati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8555)

Abstract

With the increasing popularity of GPS-enabled handheld devices, location based applications and services have access to accurate and real-time location information, raising serious privacy concerns for their millions of users. Trying to address these issues, the notion of geo-indistinguishability was recently introduced, adapting the well-known concept of Differential Privacy to the area of location-based systems. A Laplace-based obfuscation mechanism satisfying this privacy notion works well in the case of a sporadic use; Under repeated use, however, independently applying noise leads to a quick loss of privacy due to the correlation between the location in the trace.

In this paper we show that correlations in the trace can be in fact exploited in terms of a prediction function that tries to guess the new location based on the previously reported locations. The proposed mechanism tests the quality of the predicted location using a private test; in case of success the prediction is reported otherwise the location is sanitized with new noise. If there is considerable correlation in the input trace, the extra cost of the test is small compared to the savings in budget, leading to a more efficient mechanism.

We evaluate the mechanism in the case of a user accessing a location-based service while moving around in a city. Using a simple prediction function and two budget spending strategies, optimizing either the utility or the budget consumption rate, we show that the predictive mechanism can offer substantial improvements over the independently applied noise.

Keywords

Prediction Function Prediction Rate Independent Mechanism Location Privacy Predictive Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proc. of MobiSys, USENIX (2003)Google Scholar
  2. 2.
    Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: Query processing for location services without compromising privacy. In: Proc. of VLDB, pp. 763–774. ACM (2006)Google Scholar
  3. 3.
    Kido, H., Yanagisawa, Y., Satoh, T.: Protection of location privacy using dummies for location-based services. In: Proc. of ICDE Workshops, p. 1248 (2005)Google Scholar
  4. 4.
    Shankar, P., Ganapathy, V., Iftode, L.: Privately querying location-based services with SybilQuery. In: Proc. of UbiComp, pp. 31–40. ACM (2009)Google Scholar
  5. 5.
    Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries in mobile environments with privacygrid. In: Proc. of WWW, pp. 237–246. ACM (2008)Google Scholar
  6. 6.
    Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Xue, M., Kalnis, P., Pung, H.K.: Location diversity: Enhanced privacy protection in location based services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 70–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.P., Boudec, J.Y.L.: Protecting location privacy: optimal strategy against localization attacks. In: Proc. of CCS, pp. 617–627. ACM (2012)Google Scholar
  9. 9.
    Shokri, R., Theodorakopoulos, G., Boudec, J.Y.L., Hubaux, J.P.: Quantifying location privacy. In: Proc. of S&P, pp. 247–262. IEEE (2011)Google Scholar
  10. 10.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy: Theory meets practice on the map. In: Proc. of ICDE, pp. 277–286. IEEE (2008)Google Scholar
  12. 12.
    Ho, S.S., Ruan, S.: Differential privacy for location pattern mining. In: Proc. of SPRINGL, pp. 17–24. ACM (2011)Google Scholar
  13. 13.
    Chen, R., Ács, G., Castelluccia, C.: Differentially private sequential data publication via variable-length n-grams. In: Proc. of CCS, pp. 638–649. ACM (2012)Google Scholar
  14. 14.
    Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Proc. of CCS, pp. 901–914. ACM (2013)Google Scholar
  15. 15.
    Zheng, Y., Xie, X., Ma, W.Y.: Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)Google Scholar
  16. 16.
    Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: GIS, pp. 99–108 (2010)Google Scholar
  17. 17.
    Chatzikokolakis, K., Palamidessi, C., Stronati, M.: A predictive differentially-private mechanism for mobility traces. CoRR abs/1311.4008 (2013)Google Scholar
  18. 18.
    Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential privacy. In: Proc. of ICFP, pp. 157–168. ACM (2010)Google Scholar
  19. 19.
    Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the Scope of Differential Privacy using metrics. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: Proc. of STOC, pp. 765–774 (2010)Google Scholar
  21. 21.
    Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Show me how you move and i will tell you who you are. Trans. on Data Privacy 4(2), 103–126 (2011)Google Scholar
  22. 22.
    Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: FOCS, pp. 61–70. IEEE (2010)Google Scholar
  23. 23.
    Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: STOC, pp. 715–724. ACM (2010)Google Scholar
  24. 24.
    Terrovitis, M.: Privacy preservation in the dissemination of location data. SIGKDD Explorations 13(1), 6–18 (2011)CrossRefGoogle Scholar
  25. 25.
    Krumm, J.: A survey of computational location privacy. Personal and Ubiquitous Computing 13(6), 391–399 (2009)CrossRefGoogle Scholar
  26. 26.
    Shin, K.G., Ju, X., Chen, Z., Hu, X.: Privacy protection for users of location-based services. IEEE Wireless Commun. 19(2), 30–39 (2012)CrossRefGoogle Scholar
  27. 27.
    Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: Proc. of SecureComm, pp. 194–205. IEEE (2005)Google Scholar
  28. 28.
    Dewri, R.: Local differential perturbations: Location privacy under approximate knowledge attackers. IEEE Trans. on Mobile Computing 99((PrePrints), 1 (2012)Google Scholar
  29. 29.
    Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving user location privacy in mobile data management infrastructures. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 393–412. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Ardagna, C.A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Samarati, P.: Location privacy protection through obfuscation-based techniques. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602, pp. 47–60. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Konstantinos Chatzikokolakis
    • 1
  • Catuscia Palamidessi
    • 1
  • Marco Stronati
    • 1
  1. 1.CNRS, INRIA, LIX Ecole PolytechniqueFrance

Personalised recommendations