Classical Control of Large-Scale Quantum Computers

  • Simon J. Devitt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8507)


The accelerated development of quantum technology has reached a pivotal point. Early in 2014, several results were published demonstrating that several experimental technologies are now accurate enough to satisfy the requirements of fault-tolerant, error corrected quantum computation. While there are many technological and experimental issues that still need to be solved, the ability of experimental systems to now have error rates low enough to satisfy the fault-tolerant threshold for several error correction models is a tremendous milestone. Consequently, it is now a good time for the computer science and classical engineering community to examine the classical problems associated with compiling quantum algorithms and implementing them on future quantum hardware. In this paper, we will review the basic operational rules of a topological quantum computing architecture and outline one of the most important classical problems that need to be solved; the decoding of error correction data for a large-scale quantum computer. We will endeavour to present these problems independently from the underlying physics as much of this work can be effectively solved by non-experts in quantum information or quantum mechanics.


quantum computing topological quantum computing classical processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nielsen, M., Chuang, I.: Quantum Computation and Information, 2nd edn. Cambridge University Press (2000)Google Scholar
  2. 2.
    Gaebel, T., Domhan, M., Popa, I., Wittmann, C., Neumann, P., Jelezko, F., Rabeau, J., Stavrias, N., Greentree, A., Prawer, S., Meijer, J., Twamley, J., Hemmer, P., Wrachtrup, J.: Room Temperature coherent control of coupled single spins in solid. Nature Physics (London) 2, 408–413 (2006)CrossRefGoogle Scholar
  3. 3.
    Hanson, R., Awschalom, D.: Coherent manipulation of single spins in semiconductors. Nature (London) 453, 1043–1049 (2008)CrossRefGoogle Scholar
  4. 4.
    Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature (London) 456, 218–221 (2008)CrossRefGoogle Scholar
  5. 5.
    Politi, A., Matthews, J., O’Brien, J.: Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Pla, J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J.L., Jamieson, D.N., Dzurak, A.S., Morello, A.: A single-atom electron spin qubit in Silicon. Nature (London) 489, 541–545 (2012)CrossRefGoogle Scholar
  7. 7.
    Lucero, E., Barends, R., Chen, Y., Kelly, J., Mariantoni, M., Megrant, A., O’Malley, P., Sank, D., Vainsencher, A., Wenner, J., White, T., Yin, Y., Cleland, A.N., Martinis, J.: Computing prime factors with a Josephson phase qubit quantum processor. Nature Physics 8, 719–723 (2012)CrossRefGoogle Scholar
  8. 8.
    Ladd, T., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.: Quantum Computing. Nature (London) 464, 45–53 (2010)CrossRefGoogle Scholar
  9. 9.
    Vinci, W., Albash, T., Mishra, A., Warburton, P.A., Lidar, D.A.: Distinguishing Classical and Quantum Models for the D-Wave Device. arxiv:1403.4228 (2014)Google Scholar
  10. 10.
    Boixo, S., Ronnow, T.F., Wecker, S.I.Z.W.D., Lidar, D., Martinis, J., Troyer, M.: Quantum annealing with more than one hundred qubits. Nature Physics 10, 218 (2014)CrossRefGoogle Scholar
  11. 11.
    Shin, S., Smith, G., Smolin, J., Vazirani, U.: How “Quantum” is the D-Wave Machine? arxiv:1401.0787 (2014)Google Scholar
  12. 12.
    Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T., Mutus, J., Fowler, A., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Neill, C., O‘Malley, P., Roushan, P., Vainsencher, A., Wenner, J., Korotkov, A., Cleland, A., Martinis, J.: Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing. arXiv:1402.4848 (2014)Google Scholar
  13. 13.
    Choi, T., Debnath, S., Manning, T., Figgatt, C., Gong, Z.X., Duan, L.M., Monroe, C.: Optimal quantum control of multi-mode couplings between trapped ion qubits for scalable entanglement. arxiv:1401.1575 (2014)Google Scholar
  14. 14.
    Devitt, S., Munro, W., Nemoto, K.: Quantum error correction for beginners. Rep. Prog. Phys. 76, 76001 (2013)CrossRefGoogle Scholar
  15. 15.
    Steane, A.: Quantum Computing and Error Correction. Decoherence and its implications in quantum computation and information transfer. In: Gonis, Turchi (eds.), pp. 284–298. IOS Press, Amsterdam (2001), quant-ph/0304016 (2001)Google Scholar
  16. 16.
    Calderbank, A., Rains, E., Shor, P., Sloane, N.: Quantum Error Correction via Codes Over GF(4). IEEE Trans. Inform. Theory 44, 1369 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Knill, E., Laflamme, R., Viola, L.: Theory of Quantum Error Correction for General Noise. Phys. Rev. Lett. 84, 2525 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Aharonov, D., Ben-Or, M.: Fault-tolerant Quantum Computation with constant error. In: Proceedings of 29th Annual ACM Symposium on Theory of Computing, p. 46 (1997)Google Scholar
  19. 19.
    Kitaev, A.: Quantum Computations: algorithms and error correction. Russ. Math. Serv. 52, 1191 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Dennis, E., Kitaev, A., Landahl, A., Preskill, J.: Topological Quantum Memory. J. Math. Phys. 43, 4452 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Raussendorf, R., Harrington, J., Goyal, K.: A Fault-tolerant one way quantum computer. Ann. Phys. 321, 2242 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007)CrossRefGoogle Scholar
  23. 23.
    Fowler, A., Mariantoni, M., Martinis, J., Cleland, A.: Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86, 32324 (2012)CrossRefGoogle Scholar
  24. 24.
    Devitt, S., Fowler, A., Tilma, T., Munro, W., Nemoto, K.: Classical Processing Requirements for a Topological Quantum Computing Systems. Int. J. Quant. Inf. 8, 1 (2010)CrossRefGoogle Scholar
  25. 25.
    Duclos-Cianci, G., Poulin, D.: Fault-Tolerant Renormalization Group Decoded for Abelian Topological Codes. Quant. Inf. Comp. 14, 721 (2014)Google Scholar
  26. 26.
    Kliuchnikov, V., Maslov, D., Mosca, M.: Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett. 110, 190502 (2013)CrossRefGoogle Scholar
  27. 27.
    Meter, R.V., Itoh, K.: Fast Quatum Modular Exponentiation. Phys. Rev. A. 71, 052320 (2005)Google Scholar
  28. 28.
    Zalka, C.: Fast Versions of Shor’s quantum factoring algorithm. quant-ph/9806084 (1998)Google Scholar
  29. 29.
    Vedral, V., Barenco, A., Ekert, A.: Quantum Networks for elementary arithmetic operations. Phys. Rev. A. 54, 147 (1996)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Choi, B., Meter, R.V.: A \(\Theta(\sqrt{n})\)-depth Quantum Adder on a 2D NTC Quantum Computer Architecture. ACM Journal on Emerging Technologies in Computer Systems (JETC) 7, 11 (2011)Google Scholar
  31. 31.
    Cleve, R., Watrous, J.: Fast Parallel circuits for the quantum fourier transform. In: Proc. 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2000), pp. 526–536 (2000)Google Scholar
  32. 32.
    Meter, R.V., Itoh, K.: Fast Quantum Modular Exponentiation. Phys. Rev. A. 71, 52320 (2005)CrossRefGoogle Scholar
  33. 33.
    Raussendorf, R., Harrington, J., Goyal, K.: Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Fowler, A., Goyal, K.: Topological cluster state quantum computing. Quant. Inf. Comp. 9, 721 (2009)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Stock, R., James, D.: A Scalable, high-speed measurement based quantum computer using trapped ions. Phys. Rev. Lett. 102, 170501 (2009)CrossRefGoogle Scholar
  36. 36.
    Devitt, S., Fowler, A., Stephens, A., Greentree, A., Hollenberg, L., Munro, W., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New. J. Phys. 11, 083032 (2009)Google Scholar
  37. 37.
    Nemoto, K., Trupke, M., Devitt, S., Stephens, A., Buczak, K., Nobauer, T., Everitt, M., Schmiedmayer, J., Munro, W.: Photonic architecture for scalable quantum information processing in NV-diamond. arXiv:1309.4277 (2013)Google Scholar
  38. 38.
    Jones, N.C., Meter, R.V., Fowler, A., McMahon, P., Kim, J., Ladd, T., Yamamoto, Y.: A Layered Architecture for Quantum Computing Using Quantum Dots. Phys. Rev. X 2, 31007 (2012)Google Scholar
  39. 39.
    Meter, R.V., Ladd, T., Fowler, A., Yamamoto, Y.: Distributed Quantum Computation Architecture Using Semiconductor Nanophotonics. Int. J. Quant. Inf. 8, 295 (2010)CrossRefGoogle Scholar
  40. 40.
    Monroe, C., Raussendorf, R., Ruthven, A., Brown, K., Maunz, P., Duan, L.M., Kim, J.: Large Scale Modular Quantum Computer Architecture with Atomic Memory and Photonic Interconnects. Phys. Rev. A 89, 22317 (2014)CrossRefGoogle Scholar
  41. 41.
    Raussendorf, R., Briegel, H.J.: A One way Quantum Computer. Phys. Rev. Lett. 86, 5188 (2001)CrossRefGoogle Scholar
  42. 42.
    Devitt, S., Stephens, A., Munro, W., Nemoto, K.: Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nature Communications 4, 2524 (2013)CrossRefGoogle Scholar
  43. 43.
    Gottesman, D.: PhD Thesis (Caltech). quant-ph/9705052 (1997)Google Scholar
  44. 44.
    Edmonds, J.: Paths, trees, and flowers. Canadian J. Math. 17, 449 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Kolmogorov, V.: Blossom V: A new implementation of a minimum cost perfect matching algorithm. Math. Prog. Comp. 1, 43 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Fowler, A., Whiteside, A., Hollenberg, L.: Towwards practical classical processing for the surface code: Timing analysis. Phys. Rev. A. 86, 042313 (2012)Google Scholar
  47. 47.
    Fowler, A.: Minimum weight perfect matching in O(1) parallel time. arxiv:1307.1740 (2013)Google Scholar
  48. 48.
    Stephens, A.: Fault-tolerant thresholds for quantum error correction with the surface code. Phys. Rev. A. 89, 022321 (2014)Google Scholar
  49. 49.
    Kane, B.: A Silicon-Based nuclear spin Quantum Computer. Nature (London) 393, 133 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Simon J. Devitt
    • 1
    • 2
  1. 1.Ochanomizu UniversityBunkyo-kuJapan
  2. 2.National Institute of InformaticsChiyoda-kuJapan

Personalised recommendations