Advertisement

Cross-Level Validation of Topological Quantum Circuits

  • Alexandru Paler
  • Simon Devitt
  • Kae Nemoto
  • Ilia Polian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8507)

Abstract

Quantum computing promises a new approach to solving difficult computational problems, and the quest of building a quantum computer has started. While the first attempts on construction were succesful, scalability has never been achieved, due to the inherent fragile nature of the quantum bits (qubits). From the multitude of approaches to achieve scalability topological quantum computing (TQC) is the most promising one, by being based on an flexible approach to error-correction and making use of the straightforward measurement-based computing technique. TQC circuits are defined within a large, uniform, 3-dimensional lattice of physical qubits produced by the hardware and the physical volume of this lattice directly relates to the resources required for computation. Circuit optimization may result in non-intuitive mismatches between circuit specification and implementation. In this paper we introduce the first method for cross-level validation of TQC circuits. The specification of the circuit is expressed based on the stabilizer formalism, and the stabilizer table is checked by mapping the topology on the physical qubit level, followed by quantum circuit simulation. Simulation results show that cross-level validation of error-corrected circuits is feasible.

Keywords

validation quantum computing topological quantum computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen, M., Chuang, I.: Quantum Computation and Information, 2nd edn. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.: Quantum Computers. Nature 464, 45–53 (2010)CrossRefGoogle Scholar
  3. 3.
    Fowler, A., Goyal, K.: Topological cluster state quantum computing. Quant. Inf. Comp. 9, 721 (2009)MATHMathSciNetGoogle Scholar
  4. 4.
    Raussendorf, R., Harrington, J., Goyal, K.: Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Devitt, S., Fowler, A., Stephens, A., Greentree, A., Hollenberg, L., Munro, W., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New. J. Phys. 11, 83032 (2009)CrossRefGoogle Scholar
  6. 6.
    Jones, N.C., Meter, R.V., Fowler, A., McMahon, P., Kim, J., Ladd, T., Yamamoto, Y.: A layered architecture for quantum computing using quantum dots. Phys. Rev. X. 2, 031007 (2012)Google Scholar
  7. 7.
    Fowler, A., Devitt, S.: A bridge to lower overhead quantum computation, arxiv:1209.0510 (2012)Google Scholar
  8. 8.
    Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence checking of reversible circuits. In: 39th International Symposium on Multiple-Valued Logic, ISMVL 2009, pp. 324–330 (2009)Google Scholar
  9. 9.
    Paler, A., Devitt, S.J., Nemoto, K., Polian, I.: Mapping of topological quantum circuits to physical hardware. Scientific reports 4 (2014)Google Scholar
  10. 10.
    Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A. 70, 052328 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexandru Paler
    • 1
  • Simon Devitt
    • 2
  • Kae Nemoto
    • 2
  • Ilia Polian
    • 1
  1. 1.University of PassauPassauGermany
  2. 2.National Institute of InformaticsChiyoda-kuJapan

Personalised recommendations