Advertisement

Quantum Circuit Optimization by Hadamard Gate Reduction

  • Nabila Abdessaied
  • Mathias Soeken
  • Rolf Drechsler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8507)

Abstract

Due to its fault-tolerant gates, the Clifford+T library consisting of Hadamard (denoted by H), T, and CNOT gates has attracted interest in the synthesis of quantum circuits. Since the implementation of T gates is expensive, recent research is aiming at minimizing the use of such gates. It has been shown that T-depth optimizations can be implemented efficiently for circuits consisting only of T and CNOT gates and that H gates impede the optimization significantly.

In this paper, we investigate the role of H gates in reducing the T-count and T-depth for quantum circuits. To reduce the number of H gates, we propose several algorithms targeting different steps in the synthesis of reversible functions as quantum circuits.

Experiments show the effect of H gate reductions on the costs for T-count and T-depth. Our approach yields a significant improvement of up to 88% in the final T-depth compared to the best known T-depth optimization technique.

Keywords

Boolean Function Quantum Circuit Quantum Gate Target Line CNOT Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 439(1907), 553–558 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. Foundations of Computer Science, 124–134 (1994)Google Scholar
  3. 3.
    Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1000–1010 (2006)CrossRefGoogle Scholar
  4. 4.
    Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates. Quantum Information & Computation 13(7-8), 607–630 (2013)MathSciNetGoogle Scholar
  5. 5.
    Jones, N.C.: Logic synthesis for fault-tolerant quantum computers. arXiv preprint arXiv:1310.7290 (2013)Google Scholar
  6. 6.
    Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Physical Review A 80(5), 52312 (2009)CrossRefGoogle Scholar
  7. 7.
    Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 32(6), 818–830 (2013)CrossRefGoogle Scholar
  8. 8.
    Gosset, D., Kliuchnikov, V., Mosca, M., Russo, V.: An algorithm for the T-count. arXiv preprint arXiv:1308.4134 (2013)Google Scholar
  9. 9.
    Amy, M., Maslov, D., Mosca, M.: Polynomial-time T-depth optimization of Clifford+T circuits via matroid partitioning. arXiv preprint arXiv:1303.2042 (2013)Google Scholar
  10. 10.
    Toffoli, T.: Reversible Computing. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  11. 11.
    Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. TCAD 22(6), 710–722 (2003)Google Scholar
  12. 12.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)Google Scholar
  13. 13.
    Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52, 3457–3467 (1995)CrossRefGoogle Scholar
  14. 14.
    Sasanian, Z., Wille, R., Miller, D.M., Drechsler, R.: Realizing reversible circuits using a new class of quantum gates. In: Design Automation Conference, pp. 36–41 (2012)Google Scholar
  15. 15.
    Selinger, P.: Quantum circuits of T-depth one. Physical Review A 87(4), 42302 (2013)CrossRefGoogle Scholar
  16. 16.
    Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003)Google Scholar
  17. 17.
    Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing. PacRim 2007, pp. 206–209 (2007)Google Scholar
  18. 18.
    Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: Asia and South Pacific Design Automation Conference, pp. 59–70 (2012)Google Scholar
  19. 19.
    Wille, R., Große, D., Dueck, G., Drechsler, R.: Reversible logic synthesis with output permutation. In: 2009 22nd International Conference on VLSI Design, pp. 189–194 (2009)Google Scholar
  20. 20.
    Maslov, D., Dueck, G., Miller, D.: Simplification of Toffoli networks via templates. In: Proceedings of the 16th Symposium on Integrated Circuits and Systems Design, pp. 53–58 (2003)Google Scholar
  21. 21.
    Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible circuits. In: IEEE Design Automation Conference, pp. 647–652 (2010)Google Scholar
  22. 22.
    Abdessaied, N., Wille, R., Soeken, M., Drechsler, R.: Reducing the depth of quantum circuits using additional circuit lines. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 221–233. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Soeken, M., Wille, R., Dueck, G., Drechsler, R.: Window optimization of reversible and quantum circuits. In: 2010 IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems, pp. 341–345 (2010)Google Scholar
  24. 24.
    Sasanian, Z., Miller, D.M.: Reversible and quantum circuit optimization: A functional approach. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 112–124. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Maslov, D., Dueck, G.: Improved quantum cost for n-bit Toffoli gates. Electronics Letters 39, 1790 (2003)CrossRefGoogle Scholar
  26. 26.
    Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. In: 41st IEEE International Symposium on Multiple-Valued Logic, pp. 217–222 (2011)Google Scholar
  27. 27.
    Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: Asia and South Pacific Design Automation Conference, pp. 145–150 (2013)Google Scholar
  28. 28.
    Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(3), 436–444 (2008)CrossRefGoogle Scholar
  29. 29.
    Soeken, M., Miller, D.M., Drechsler, R.: Quantum circuits employing roots of the Pauli matrices. Physical Review A 88, 042322 (2013)CrossRefGoogle Scholar
  30. 30.
    Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: A toolkit for reversible circuit design. Journal of Multiple-Valued Logic & Soft Computing 18(1) (2012), RevKit is available at http://www.revkit.org
  31. 31.
    Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online resource for reversible functions and reversible circuits. In: 38th IEEE International Symposium on Multiple-Valued Logic, pp. 220–225 (2008), RevLib is available at http://www.revlib.org
  32. 32.
    Maslov, D.: Reversible logic synthesis benchmarks page, http://webhome.cs.uvic.ca/~dmaslov/ (last accessed January 2011)
  33. 33.
    Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Transactions on Design Automation of Electronic Systems (TODAES) 12(4), 42 (2007)CrossRefGoogle Scholar
  34. 34.
    De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers. Advances in Mathematics of Communications 2(2), 183–200 (2008)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nabila Abdessaied
    • 2
  • Mathias Soeken
    • 1
    • 2
  • Rolf Drechsler
    • 1
    • 2
  1. 1.Institute of Computer ScienceUniversity of BremenGermany
  2. 2.Cyber-Physical SystemsDFKI GmbHBremenGermany

Personalised recommendations