SAT-Enhanced Mizar Proof Checking

  • Adam Naumowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8543)


In this paper we present an experimental extension of the Mizar system employing an external SAT solver to strengthen the notion of obviousness of the Mizar proof checker. The presented extension is based on a version of MiniSAT, called Logic2CNF. The SAT-enhanced Mizar checker is programmed to automatically spawn a new Logc2CNF process whenever it needs to justify any goal that involves equalities based on Boolean operations.


Mizar SAT Boolean operations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alama, J., Kohlhase, M., Mamane, L., Naumowicz, A., Rudnicki, P., Urban, J.: Licensing the Mizar Mathematical Library. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS, vol. 6824, pp. 149–163. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Caminati, M.B., Rosolini, G.: Custom automations in Mizar. Journal of Automated Reasoning 50(2), 147–160 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. Journal of Formalized Reasoning 3(2), 153–245 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathematical repositories. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 235–249. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Grabowski, A., Schwarzweller, C.: Towards automatically categorizing mathematical knowledge. In: Proceedings of Federated Conference on Computer Science and Information Systems – FedCSIS 2012, Wroclaw, Poland, September 9–12, pp. 63–68 (2012)Google Scholar
  7. 7.
    Kaliszyk, C., Urban, J.: Mizar 40 for Mizar 40. CoRR, abs/1310.2805 (2013)Google Scholar
  8. 8.
    Korniłowicz, A.: Tentative experiments with ellipsis in Mizar. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 453–457. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Korniłowicz, A.: On rewriting rules in Mizar. Journal of Automated Reasoning 50(2), 203–210 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Naumowicz, A.: An example of formalizing recent mathematical results in Mizar. Journal of Applied Logic 4(4), 396–413 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Naumowicz, A.: Evaluating prospective built-in elements of computer algebra in Mizar. Studies in Logic, Grammar and Rhetoric 10(23), 191–200 (2007)Google Scholar
  12. 12.
    Naumowicz, A.: Interfacing external CA systems for Gröbner bases computation in Mizar proof checking. International Journal of Computer Mathematics 87(1), 1–11 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 290–301. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Naumowicz, A., Korniłowicz, A.: A brief overview of Mizar. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 67–72. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Pąk, K.: Methods of lemma extraction in natural deduction proofs. Journal of Automated Reasoning 50(2), 217–228 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Trybulec, A., Korniłowicz, A., Naumowicz, A., Kuperberg, K.: Formal mathematics for mathematicians. Journal of Automated Reasoning 50(2), 119–121 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reasoning 50(2), 229–241 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Weber, T.: Integrating a SAT solver with an LCF-style theorem prover. In: Proceedings of the Third International Workshop on Pragmatical Aspects of Decision Procedures in Automated Reasoning, PDPAR (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Adam Naumowicz
    • 1
  1. 1.Institute of InformaticsUniversity of BiałystokBiałystokPoland

Personalised recommendations