Digital Repository of Mathematical Formulae

  • Howard S. Cohl
  • Marjorie A. McClain
  • Bonita V. Saunders
  • Moritz Schubotz
  • Janelle C. Williams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8543)


The purpose of the NIST Digital Repository of Mathematical Formulae (DRMF) is to create a digital compendium of mathematical formulae for orthogonal polynomials and special functions (OPSF) and of associated mathematical data. The DRMF addresses needs of working mathematicians, physicists and engineers: providing a platform for publication and interaction with OPSF formulae on the web. Using MediaWiki extensions and other existing technology (such as software and macro collections developed for the NIST Digital Library of Mathematical Functions), the DRMF acts as an interactive web domain for OPSF formulae. Whereas Wikipedia and other web authoring tools manifest notions or descriptions as first class objects, the DRMF does that with mathematical formulae. See .


Orthogonal Polynomial Mathematical Formula Optical Character Recognition Digital Repository Basic Hypergeometric Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Andrews et al., 1999]
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  2. [Brychkov, 2008]
    Brychkov, Y.A.: Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Chapman & Hall/CRC Press, Boca Raton (2008)zbMATHGoogle Scholar
  3. [Byrd and Friedman, 1954]
    Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Physicists. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete, Bd LXVII. Springer, Berlin (1954)Google Scholar
  4. [Cervone, 2012]
    Cervone, D.: Mathjax: A Platform for Mathematics on the Web. Notices of the American Mathematical Society 59(2), 312–316 (2012)CrossRefzbMATHGoogle Scholar
  5. [Erdélyi et al., a]
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vols. 1-3 (1981)Google Scholar
  6. [Erdélyi et al., b]
    Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vols. 1-2 (1954)Google Scholar
  7. [Gasper and Rahman, 2004]
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 96. Cambridge University Press, Cambridge (2004), With a foreword by Richard AskeyGoogle Scholar
  8. [Glasser et al., 2012]
    Glasser, L., Kohl, K.T., Koutschan, C., Moll, V.H., Straub, A.: The integrals in Gradshteyn and Ryzhik. Part 22: Bessel-K functions. Scientia. Series A. Mathematical Sciences. New Series 22, 129–151 (2012)MathSciNetzbMATHGoogle Scholar
  9. [Gradshteyn and Ryzhik, 2007]
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Elsevier/Academic Press, Amsterdam (2007)zbMATHGoogle Scholar
  10. [Ismail, 2005]
    Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in one Variable. Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005), With two chapters by Walter Van Assche, With a foreword by Richard A. AskeyGoogle Scholar
  11. [Koekoek et al., 2010]
    Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their q-analogues. Springer Monographs in Mathematics. Springer, Berlin (2010), With a foreword by Tom H. KoornwinderGoogle Scholar
  12. [Koornwinder, 2014]
    Koornwinder, T.H.: Additions to the formula lists in “Hypergeometric orthogonal polynomials and their q-analogues”, by Koekoek, Lesky and Swarttouw. arXiv:1401.0815 (2014)Google Scholar
  13. [Magnus et al., 1966]
    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd enlarged edn. Die Grundlehren der mathematischen Wissenschaften, Band 52. Springer-Verlag New York, Inc., New York (1966)Google Scholar
  14. [Olver et al., 2010]
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010), Companion to
  15. [Prudnikov et al., 1986]
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vols. 1-5. Gordon & Breach Science Publishers, New York (1986)Google Scholar
  16. [Schubotz, 2013]
    Schubotz, M.: Making Math Searchable in Wikipedia. In: Conferences on Intelligent Computer Mathematics, abs/1304.5475 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Howard S. Cohl
    • 1
  • Marjorie A. McClain
    • 1
  • Bonita V. Saunders
    • 1
  • Moritz Schubotz
    • 2
  • Janelle C. Williams
    • 3
  1. 1.Applied and Computational Mathematics DivisionNational Institute of Standards and Technology (NIST)GaithersburgUSA
  2. 2.Database Systems and Information Management GroupTechnische UniversitätBerlinGermany
  3. 3.Department of Mathematics and Computer ScienceVirginia State UniversityPetersburgUSA

Personalised recommendations