Towards Knowledge Management for HOL Light

  • Cezary Kaliszyk
  • Florian Rabe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8543)


The libraries of deduction systems are growing constantly, so much that knowledge management concerns are becoming increasingly urgent to address. However, due to time constraints and legacy design choices, there is barely any deduction system that can keep up with the MKM state of the art. HOL Light in particular was designed as a lightweight deduction system that systematically relegates most MKM aspects to external solutions — not even the list of theorems is stored by the HOL Light kernel.

We make the first and hardest step towards knowledge management for HOL Light: We provide a representation of the HOL Light library in a standard MKM format that preserves the logical semantics and notations but is independent of the system itself. This provides an interface layer at which independent MKM applications can be developed. Moreover, we develop two such applications as examples. We employ the MMT system and its interactive web browser to view and navigate the library. And we use the MathWebSearch system to obtain a search engine for it.


Knowledge Management Deduction System Logical Framework Proof Assistant Extension Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AA12]
    Adams, M., Aspinall, D.: Recording and refactoring HOL Light tactic proofs. In: Proceedings of the IJCAR Workshop on Automated Theory Exploration (2012),
  2. [BCC+04]
    Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase, M.: The Open Math Standard, Version 2.0. Technical report, The Open Math Society (2004),
  3. [CK07]
    Corbineau, P., Kaliszyk, C.: Cooperative repositories for formal proofs. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) MKM/Calculemus 2007. LNCS (LNAI), vol. 4573, pp. 221–234. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. [FGT93]
    Farmer, W., Guttman, J., Thayer, F.: IMPS: An Interactive Mathematical Proof System. Journal of Automated Reasoning 11(2), 213–248 (1993)CrossRefzbMATHGoogle Scholar
  5. [GAA+13]
    Gonthier, G., et al.: A Machine-Checked Proof of the Odd Order Theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–179. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. [GK14]
    Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 267–281. Springer, Heidelberg (2014)Google Scholar
  7. [Hal05]
    Hales, T.: Introduction to the Flyspeck Project. In: Coquand, T., Lombardi, H., Roy, M. (eds.) Mathematics, Algorithms, Proofs. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2005)Google Scholar
  8. [Har96]
    Harrison, J.: HOL Light: A Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. [HHP93]
    Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [HKR12]
    Horozal, F., Kohlhase, M., Rabe, F.: Extending MKM Formats at the Statement Level. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 65–80. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. [HRK14]
    Horozal, F., Rabe, F., Kohlhase, M.: Flexary Operators for Formalized Mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 312–327. Springer, Heidelberg (2014)Google Scholar
  12. [Hur09]
    Hurd, J.: OpenTheory: Package Management for Higher Order Logic Theories. In: Reis, G.D., Théry, L. (eds.) Programming Languages for Mechanized Mathematics Systems, pp. 31–37. ACM (2009)Google Scholar
  13. [HZ]
    Harrison, J., Zumkeller, R.: update_database module. Part of the HOL Light distributionGoogle Scholar
  14. [IKRU13]
    Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar Mathematical Library in OMDoc: Translation and Applications. Journal of Automated Reasoning 50(2), 191–202 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [KK13]
    Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 51–66. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. [Koh06]
    Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. [KŞ06]
    Kohlhase, M., Sucan, I.: A Search Engine for Mathematical Formulae. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 241–253. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. [KU14]
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. Journal of Automated Reasoning (2014),
  19. [KW10]
    Keller, C., Werner, B.: Importing HOL Light into Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. [NSM01]
    Naumov, P., Stehr, M.-O., Meseguer, J.: The HOL/NuPRL proof translator - A practical approach to formal interoperability. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 329–345. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. [OAA13]
    Obua, S., Adams, M., Aspinall, D.: Capturing hiproofs in HOL light. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 184–199. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. [OS06]
    Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. [Pau94]
    Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)Google Scholar
  24. [Pit93]
    Pitts, A.: The HOL logic. In: Gordon, M.J.C., Melham, T.F. (eds.) Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press (1993)Google Scholar
  25. [Rab13]
    Rabe, F.: The MMT API: A Generic MKM System. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 339–343. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. [Rey83]
    Reynolds, J.: Types, Abstraction, and Parametric Polymorphism. In: Information Processing, pp. 513–523. North-Holland, Amsterdam (1983)Google Scholar
  27. [RK13]
    Rabe, F., Kohlhase, M.: A Scalable Module System. Information and Computation 230(1), 1–54 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. [RKS11]
    Rabe, F., Kohlhase, M., Sacerdoti Coen, C.: A Foundational View on Integration Problems. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) Calculemus/MKM 2011. LNCS (LNAI), vol. 6824, pp. 107–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. [TGMW10]
    Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for proof re-animation. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/Calculemus/MKM 2010. LNCS (LNAI), vol. 6167, pp. 440–454. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. [TKUG13a]
    Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Communicating formal proofs: The case of Flyspeck. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 451–456. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  31. [TKUG13b]
    Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display: A wiki for Flyspeck. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 152–167. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  32. [Wie09]
    Wiedijk, F.: Stateless HOL. In: Hirschowitz, T. (ed.) TYPES. EPTCS, vol. 53, pp. 47–61 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cezary Kaliszyk
    • 1
  • Florian Rabe
    • 2
  1. 1.University of InnsbruckAustria
  2. 2.Jacobs UniversityBremenGermany

Personalised recommendations