Competitive Online Routing on Delaunay Triangulations

  • Prosenjit Bose
  • Jean-Lou De Carufel
  • Stephane Durocher
  • Perouz Taslakian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8503)


The sequence of adjacent nodes (graph walk) visited by a routing algorithm on a graph G between given source and target nodes s and t is a c-competitive route if its length in G is at most c times the length of the shortest path from s to t in G. We present 21.766-, 17.982- and 15.479-competitive online routing algorithms on the Delaunay triangulation of an arbitrary given set of points in the plane. This improves the competitive ratio on Delaunay triangulations from the previous best of 45.749. We present a 7.621-competitive online routing algorithm for Delaunay triangulations of point sets in convex position.


Short Path Voronoi Diagram Competitive Ratio Delaunay Triangulation Target Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific (2013)Google Scholar
  2. 2.
    Bose, P., Brodnik, A., Carlsson, S., Demaine, E.D., Fleischer, R., López-Ortiz, A., Morin, P., Munro, I.: Online routing in convex subdivisions. Int. J. Comp. Geom. & App. 12(4), 283–295 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bose, P., Carmi, P., Durocher, S.: Bounding the locality of distributed routing algorithms. Dist. Comp. 26(1), 39–58 (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bose, P., Keil, J.M.: On the stretch factor of the constrained Delaunay triangulation. In: ISVD, pp. 25–31 (2006)Google Scholar
  5. 5.
    Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Comp. Sci. 324(2-3), 273–288 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comp. 33(4), 937–951 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bose, P., Morin, P., Stojmenović, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless N. 7(6), 609–616 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Braverman, M.: On ad hoc routing with guaranteed delivery. In: PODC, vol. 27, p. 418. ACM (2008)Google Scholar
  9. 9.
    Chen, D., Devroye, L., Dujmović, V., Morin, P.: Memoryless routing in convex subdivisions: Random walks are optimal. In: EuroCG, pp. 109–112 (2010)Google Scholar
  10. 10.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)Google Scholar
  11. 11.
    Cui, S., Kanj, I.A., Xia, G.: On the stretch factor of Delaunay triangulations of points in convex position. Comp. Geom. 44(2), 104–109 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Dobkin, D.P., Friedman, S.J., Supowit, K.J.: Delaunay graphs are almost as good as complete graphs. Disc. & Comp. Geom. 5, 399–407 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Durocher, S., Kirkpatrick, D., Narayanan, L.: On routing with guaranteed delivery in three-dimensional ad hoc wireless networks. Wireless Net. 16, 227–235 (2010)CrossRefGoogle Scholar
  15. 15.
    Fraser, M.: Local routing on tori. Adhoc and Sensor Wireless Net. 6, 179–196 (2008)Google Scholar
  16. 16.
    Fraser, M., Kranakis, E., Urrutia, J.: Memory requirements for local geometric routing and traversal in digraphs. In: CCCG, vol. 20, pp. 195–198 (2008)Google Scholar
  17. 17.
    Guan, X.: Face Routing in Wireless Ad-Hoc Networks. PhD thesis, University of Toronto (2009)Google Scholar
  18. 18.
    Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete euclidean graph. Disc. & Comp. Geom. 7, 13–28 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: CCCG, vol. 11, pp. 51–54 (1999)Google Scholar
  20. 20.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically optimal geometric mobile adhoc routing. In: DIALM, pp. 24–33. ACM (2002)Google Scholar
  21. 21.
    Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad-hoc networks beyond unit disk graphs. In: DIALM-POMC, pp. 69–78. ACM (2003)Google Scholar
  22. 22.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics. Wiley (2009)Google Scholar
  23. 23.
    Si, W., Zomaya, A.Y.: New memoryless online routing algorithms for Delaunay triangulations. IEEE Trans. Par. & Dist. Sys. 23(8) (2012)Google Scholar
  24. 24.
    Xia, G.: The stretch factor of the Delaunay triangulation is less than 1.998. SIAM J. Comp. 42(4), 1620–1659 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Prosenjit Bose
    • 1
  • Jean-Lou De Carufel
    • 1
  • Stephane Durocher
    • 2
  • Perouz Taslakian
    • 3
  1. 1.Carleton UniversityOttawaCanada
  2. 2.University of ManitobaWinnipegCanada
  3. 3.American University of ArmeniaYerevanArmenia

Personalised recommendations