Reconfiguring Independent Sets in Claw-Free Graphs

  • Paul Bonsma
  • Marcin Kamiński
  • Marcin Wrochna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8503)


We present a polynomial-time algorithm that, given two independent sets in a claw-free graph G, decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex v from the current independent set S and to add a new vertex w (not in S) such that the result is again an independent set. We also consider the more restricted model where v and w have to be adjacent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. Electronic Notes in Discrete Mathematics 44, 257–262 (2013)CrossRefGoogle Scholar
  2. 2.
    Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs. Journal of Combinatorial Optimization 27(1), 132–143 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Math. 308(5-6), 913–919 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite graphs. European J. of Combinatorics 30(7), 1593–1606 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list L(2, 1)-labelings in a graph. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 34–43. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 375–386. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theoret. Comput. Sci. 412(12-14), 1054–1065 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1-2), 72–96 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: Computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bonsma, P.: Rerouting shortest paths in planar graphs. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) FSTTCS. LIPIcs, vol. 18, pp. 337–349. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Google Scholar
  13. 13.
    Bonsma, P.: The complexity of rerouting shortest paths. Theor. Comput. Sci. 510, 1–12 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths. Theor. Comput. Sci. 412(39), 5205–5210 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Suzuki, A., Mouawad, A.E., Nishimura, N.: Reconfiguration of dominating sets. CoRR abs/1401.5714 (2014)Google Scholar
  16. 16.
    Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    van den Heuvel, J.: The complexity of change. Surveys in Combinatorics, 127–160 (2013)Google Scholar
  18. 18.
    Chudnovsky, M., Seymour, P.D.: The structure of claw-free graphs. In: Webb, B.S. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 327, pp. 153–171. Cambridge University Press (2005)Google Scholar
  19. 19.
    Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory, Ser. B 28(3), 284–304 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discrete Mathematics 29(1), 53–76 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Nakamura, D., Tamura, A.: A revision of Minty’s algorithm for finding a maximum weight stable set of a claw-free graph. Journal of the Operations Research Society of Japan 44(2), 194–204 (2001)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Schrijver, A.: Combinatorial optimization: Polyhedra and efficiency, vol. 24. Springer (2003)Google Scholar
  24. 24.
    Nobili, P., Sassano, A.: A reduction algorithm for the weighted stable set problem in claw-free graphs. Discrete Applied Mathematics (2013)Google Scholar
  25. 25.
    Faenza, Y., Oriolo, G., Stauffer, G.: An algorithmic decomposition of claw-free graphs leading to an O(n 3)-algorithm for the weighted stable set problem. In: SODA, pp. 630–646. SIAM (2011)Google Scholar
  26. 26.
    Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. CoRR abs/1403.0359 (2014)Google Scholar
  27. 27.
    Diestel, R.: Graph Theory. Electronic Edition. Springer-Verlag (2005)Google Scholar
  28. 28.
    Bonsma, P.: Independent set reconfiguration in cographs. CoRR abs/1402.1587 (2014); Extended abstract accepted for WG 2014Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paul Bonsma
    • 1
  • Marcin Kamiński
    • 2
  • Marcin Wrochna
    • 2
  1. 1.Faculty of EEMCSUniversity of TwenteEnschedeThe Netherlands
  2. 2.Institute of Computer ScienceUniwersytet WarszawskiWarsawPoland

Personalised recommendations