Advertisement

Environmental Scanning and Knowledge Representation for the Detection of Organised Crime Threats

  • Ben BrewsterEmail author
  • Simon Andrews
  • Simon Polovina
  • Laurence Hirsch
  • Babak Akhgar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8577)

Abstract

ePOOLICE aims at developing an efficient and effective strategic early warning system that utilises environmental scanning for the early warning and detection of current, emergent and future organised crime threats. Central to this concept is the use of environmental scanning to detect ‘weak signals’ in the external environment to monitor and identify emergent and future threats prior to their materialization into tangible criminal activity. This paper gives a brief overview of the application of textual concept extraction and categorization, and the Semantic Web technologies Formal Concept Analysis and Conceptual Graphs as part of the systems technological architecture, describing their benefits in aiding effective early warning.

Keywords

ePOOLICE Environmental Scanning Open-Source Intelligence (OSINT) Formal Concept Analysis Conceptual Graphs Ontological Knowledge Representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wright, A.: Organised crime. Routledge (2013)Google Scholar
  2. 2.
  3. 3.
    Crown Office & Procurator Fiscal Service. Solicitor General launches Serious and Organised Crime Division, http://www.copfs.gov.uk/media-site/media-releases/243-solicitor-general-launches-serious-and-organised-crime-division-socd
  4. 4.
    Abadinsky, H.: Organized crime. Cengage Learning (2009)Google Scholar
  5. 5.
    Tang, L., Liu, H.: Community detection and mining in social media. Synthesis Lectures on Data Mining and Knowledge Discovery 2(1), 1–137 (2010)CrossRefGoogle Scholar
  6. 6.
    Ng, G.S., Quek, C., Jiang, H.: FCMAC-EWS: A bank failure early warning system based on a novel localized pattern learning and semantically associative fuzzy neural network. Expert Syst. Appl. 34(2), 989–1003 (2008)CrossRefGoogle Scholar
  7. 7.
    Zenko, M., Friedman, R.R.: UN early warning for preventing conflict. Int. Peacekeeping 18(1), 21–37 (2011)CrossRefGoogle Scholar
  8. 8.
    ePOOLICE. ePOOLICE - About, https://www.epoolice.eu/EPOOLICE/about.jsp
  9. 9.
    Omand, D., Bartlett, J., Miller, C.: Introducing social media intelligence (SOCMINT). Intelligence and National Security 27(6), 801–823 (2012)CrossRefGoogle Scholar
  10. 10.
    Gerdes, A., Larsen, H.L., Rouces, J.: Issues of Security and Informational Privacy in Relation to an Environmental Scanning System for Fighting Organized Crime. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS, vol. 8132, pp. 155–163. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Criminal Intelligence Service Canada (CISC). Strategic Early Warning for Criminal Intelligence, http://www.cisc.gc.ca/products_services/sentinel/document/early_warning_methodology_e.pdf
  12. 12.
    EUROPOL. EU Serious and Organised Crime Threat Assessment, https://www.europol.europa.eu/sites/default/files/publications/socta2013.pdf
  13. 13.
    EUROPOL. EU Drug Markets Report: A Strategic Analysis, https://www.europol.europa.eu/content/eu-drug-markets-report-strategic-analysis
  14. 14.
    Sowa, J.F.: Conceptual structures: information processing in mind and machine. Addison-Wesley Longman Publishing Co., Inc. (1984)Google Scholar
  15. 15.
    Wille, R.: Formal Concept Analysis as Mathematical Theory of Concepts and Concept Hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 1–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ben Brewster
    • 1
    Email author
  • Simon Andrews
    • 1
  • Simon Polovina
    • 1
  • Laurence Hirsch
    • 1
  • Babak Akhgar
    • 1
  1. 1.CENTRICSheffield Hallam UniversitySheffieldUK

Personalised recommendations