Evolution Inclusions in Nonsmooth Systems with Applications for Earth Data Processing

Uniform Trajectory Attractors for Nonautonomous Evolution Inclusions Solutions with Pointwise Pseudomonotone Mappings
  • Michael Z. ZgurovskyEmail author
  • Pavlo O. Kasyanov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 95)


For the class of nonautonomous evolution inclusions with pointwise pseudomonotone multi-valued mappings the dynamics as t → + of all global weak solutions defined on [0, +) is studied. The existence of a compact uniform trajectory attractor is proved. The results obtained allow one to study the dynamics of solutions for new classes of evolution inclusions related to nonlinear mathematical models of controlled geophysical and socioeconomic processes and for fields with interaction functions of pseudomonotone type satisfying the condition of polynomial growth and the standard sign condition.


Evolution inclusion Pseudomonotone map Uniform trajectory attractor Feedback control 



We thank Professor David Y. Gao for many years of cooperation.


  1. 1.
    Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare operatorgleichungen und operatordifferentialgleichungen. Akademie, Berlin (1978)Google Scholar
  2. 2.
    Migórski, S., Ochal, A.: Optimal control of parabolic hemivariational inequalities. J. Glob. Optim. 17, 285–300 (2000)Google Scholar
  3. 3.
    Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V.: Evolution inclusions and variation Inequalities for Earth data processing III. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)zbMATHGoogle Scholar
  5. 5.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhauser, Basel (1985)CrossRefzbMATHGoogle Scholar
  6. 6.
    Balibrea, F., Caraballo, T., Kloeden, P.E., Valero, J.: Recent developments in dynamical systems: three perspectives. Int. J. Bifurcat. Chaos (2010).  doi:10.1142/S0218127410027246 Google Scholar
  7. 7.
    Chepyzhov, V.V., Vishik, M.I.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76, 913–964 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Migórski, S.: Boundary hemivariational inequalities of hyperbolic type and applications. J. Glob. Optim. 31(3), 505–533 (2005)Google Scholar
  9. 9.
    Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic/Plenum, Boston (2003)Google Scholar
  10. 10.
    Zgurovsky, M.Z., Mel’nik, V.S., Kasyanov, P.O.: Evolution Inclusions and Variation Inequalities for Earth Data Processing II. Springer, Berlin (2011)zbMATHGoogle Scholar
  11. 11.
    Kasyanov, P.O.: Multivalued dynamics of solutions of autonomous operator differential equations with pseudomonotone nonlinearity. Math. Notes 92, 205–218 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kasyanov, P.O.: Multivalued dynamics of solutions of an autonomous differential-operator inclusion with pseudomonotone nonlinearity. Cybern. Syst. Anal. 47, 800–811 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Chepyzhov, V.V., Vishik, M.I.: Trajectory and global attractors for 3D Navier-Stokes system. Mat. Zametki (2002).  doi:10.1023/A:1014190629738 Google Scholar
  14. 14.
    Chepyzhov, V.V., Vishik, M.I.: Trajectory attractors for evolution equations. C. R. Acad. Sci. Paris. Ser. I 321, 1309–1314 (1995)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Chepyzhov, V.V., Vishik, M.I.: Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete Contin. Dyn. Syst. 27(4), 1498–1509 (2010)MathSciNetGoogle Scholar
  16. 16.
    Sell, G.R.: Global attractors for the three-dimensional Navier-Stokes equations. J. Dyn. Differ. Equ. 8(12), 1–33 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hale, J.K.: Asymptotic Behavior of Dissipative Systems. AMS, Providence (1988)zbMATHGoogle Scholar
  18. 18.
    Ladyzhenskaya, O.A.: Attractors for Semigroups and Evolution Equations. Cambridge University Press, Cambridge (1991)CrossRefzbMATHGoogle Scholar
  19. 19.
    Mel’nik, V.S., Valero, J.: On global attractors of multivalued semiprocesses and nonautonomous evolution inclusions. Set-Valued Anal. (2000).  doi:10.1023/A:1026514727329 MathSciNetGoogle Scholar
  20. 20.
    Kapustyan, O.V., Kasyanov, P.O., Valero, J.: Pullback attractors for a class of extremal solutions of the 3D Navier-Stokes equations. J. Math. Anal. Appl. (2011).  doi:10.1016/j.jmaa.2010.07.040 MathSciNetGoogle Scholar
  21. 21.
    Gasinski, L., Papageorgiou, N.S.: Nonlinear Analysis. Series in Mathematical Analysis and Applications, vol. 9. Chapman & Hall/CRC, Boca Raton (2005)Google Scholar
  22. 22.
    Melnik, V.S., Valero, J.: On attractors of multivalued semi-flows and generalized differential equations. Set Valued Anal. 6(1), 83–111 (1998)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. Nauka, Moscow (1989) (in Russian)zbMATHGoogle Scholar
  24. 24.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988)Google Scholar
  25. 25.
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Volume II: Applications. Kluwer, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kasyanov, P.O., Toscano, L., Zadoianchuk, N.V.: Regularity of weak solutions and their attractors for a parabolic feedback control problem. Set Valued Var. Anal. (2013). doi: 10.1007/s11228-013-0233-8 MathSciNetGoogle Scholar
  27. 27.
    Zgurovsky, M.Z., Kasyanov, P.O., Zadoianchuk (Zadoyanchuk), N.V.: Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem. Appl. Math. Lett. 25(10), 1569–1574 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Applied System AnalysisNational Technical University of Ukraine “Kyiv Politechnic Institute”KyivUkraine

Personalised recommendations