TMDS: Thin-Model Data Sharing Scheme Supporting Keyword Search in Cloud Storage

  • Zheli Liu
  • Jin Li
  • Xiaofeng Chen
  • Jun Yang
  • Chunfu Jia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8544)


Data sharing systems based on cloud storage have attracted much attention recently. In such systems, encryption techniques are usually utilized to protect the privacy of outsourced sensitive data. However, to support data sharing while keeping data confidentiality, encryption keys should be shared by authorized users. As a result, many keys have to be stored and shared by the users in the data sharing system, which would be a bottleneck for users. To tackle the challenges above, we propose a secure thin-model data sharing scheme supporting a keyword search scheme called TMDS, where only a user’s master key is utilized and the keys used for keyword search are not required to be stored at the user side. Furthermore, the cloud server is assumed to be an honest-but-curious entity in our construction. TMDS offers many attractive features as follows: 1) users are able to encrypt and share data without distributing shared encryption keys; 2) each user can flexibly retrieve and decrypt data from the cloud with only a master key; 3) secure data sharing and keyword search are both supported in a single system. Furthermore, we explain how to construct a data sharing system based on TMDS. Security analysis and performance evaluation show that our scheme is secure and practical.


cloud storage data sharing searchable encryption access control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable Secure File Sharing on Untrusted Storage. In: Proc. USENIX Conf. File and Storage Technologies, pp. 29–42 (2003)Google Scholar
  2. 2.
    Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-Encryption Schemes with Applications to Secure Distributed Storage. In: Proc. Network and Distributed Systems Security Symp (NDSS), pp. 29–43 (2005)Google Scholar
  3. 3.
    Yu, S., Wang, C., Ren, K., Lou, W.: Achieving Secure, Scalable, and Fine-Grained Data Access Control in Cloud Computing. In: Proc. IEEE INFOCOM, pp. 534–542 (2010)Google Scholar
  4. 4.
    Li, J., Chen, X., Li, J., Jia, C., Ma, J., Lou, W.: Fine-grained Access Control based on Outsourced Attribute-based Encryption. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 592–609. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Li, J., Chen, X., Huang, Q., Wong, D.S.: Digital Provenance Enabling Secure Data Forensics in Cloud Computing. In: Future Generation Computer Systems. Elsevier (2013),
  6. 6.
    Liu, X., Zhang, Y., Wang, B., Yan, J.: Mona: secure multi-owner data sharing for dynamic groups in the cloud. IEEE Transactions on Parallel and Distributed Systems 24(6), 1182–1191 (2013)CrossRefGoogle Scholar
  7. 7.
    Chu, C., Chow, S., Tzeng, W., et al.: Key-Aggregate Cryptosystem for Scalable Data Sharing in Cloud Storage. IEEE Transactions on Parallel and Distributed Systems 25(2), 468–477 (2014)CrossRefGoogle Scholar
  8. 8.
    Song, X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: IEEE Symposium on Security and Privacy, pp. 44–55. IEEE Press (2000)Google Scholar
  9. 9.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of the 13th ACM conference on Computer and Communications Security, pp. 79–88. ACM Press (2006)Google Scholar
  10. 10.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS), pp. 965–976. ACM (2012)Google Scholar
  11. 11.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Hwang, Y.-H., Lee, P.J.: Public Key Encryption with Conjunctive Keyword Search and Its Extension to a Multi-user System. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Li, J., Chen, X.: Efficient Multi-user Keyword Search Over Encrypted Data in Cloud Computing. Computing and Informatics 32(4), 723–738 (2013)Google Scholar
  14. 14.
    Li, J., Wang, Q., Wang, C.: Fuzzy keyword search over encrypted data in cloud computing. In: Proc. IEEE INFOCOM, pp. 1–5 (2010)Google Scholar
  15. 15.
    Bösch, C., Brinkman, R., Hartel, P., Jonker, W.: Conjunctive wildcard search over encrypted data. In: Jonker, W., Petković, M. (eds.) SDM 2011. LNCS, vol. 6933, pp. 114–127. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Zhao, F., Nishide, T., Sakurai, K.: Multi-User Keyword Search Scheme for Secure Data Sharing with Fine-Grained Access Control. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 406–418. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Liu, Z., Wang, Z., Cheng, X., et al.: Multi-user Searchable Encryption with Coarser-Grained Access Control in Hybrid Cloud. In: Fourth International Conference on Emerging Intelligent Data and Web Technologies (EIDWT), pp. 249–255. IEEE (2013)Google Scholar
  18. 18.
    Wang, C., Wang, Q., Ren, K., Lou, W.: Privacy-Preserving Public Auditing for Data Storage Security in Cloud Computing. In: Proc. IEEE INFOCOM, pp. 525–533 (2010)Google Scholar
  19. 19.
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Phan, D.H., Pointcheval, D., Shahandashti, S.F., et al.: Adaptive CCA broadcast encryption with constant-size secret keys and ciphertexts. International Journal of Information Security 12(4), 251–265 (2013)CrossRefGoogle Scholar
  21. 21.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Oliveira, L.B., Aranha, D.F., Morais, E., et al.: Tinytate: Computing the tate pairing in resource-constrained sensor nodes. In: IEEE Sixth IEEE International Symposium on Network Computing and Applications, pp. 318–323 (2007)Google Scholar
  23. 23.
    Li, M., Lou, W., Ren, K.: Data security and privacy in wireless body area networks. IEEE Wireless Communications 17(1), 51–58 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zheli Liu
    • 1
  • Jin Li
    • 2
  • Xiaofeng Chen
    • 3
  • Jun Yang
    • 1
  • Chunfu Jia
    • 1
  1. 1.College of Computer and Control EngineeringNankai UniversityChina
  2. 2.School of Computer ScienceGuangzhou UniversityChina
  3. 3.State Key Laborary of Integrated Service NetworksXidian UniversityChina

Personalised recommendations