Autonomous Construction with Compliant Building Material

  • Touraj SoleymaniEmail author
  • Vito Trianni
  • Michael Bonani
  • Francesco Mondada
  • Marco Dorigo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)


In this paper, we develop an autonomous construction system in which a self-contained ground robot builds a protective barrier by means of compliant pockets (i.e., filled bags). We present a stochastic control algorithm based on two biological mechanisms (stigmergy and templates) that takes advantage of compliant pockets for autonomous construction. The control algorithm guides the robot to build the structure without relying on any external motion capture system or external computer. We propose a statistical model to represent the structures built with the compliant pockets, and we provide a set of criteria for assessing the performance of the proposed system. To demonstrate the feasibility of the proposed system, real-robot experiments were carried out. In each experiment, the robot successfully built the structure. The results show the viability of the proposed autonomous construction system.


Autonomous construction Compliant pockets Robotics Stigmergy Templates 



The research presented in this paper was carried out in the framework of H2-SWARM, an European Science Foundation project partially funded by the Belgian F.R.S.-FNRS, the Italian CNR, and the Swiss NSF. The work was also partially supported by the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” (grant 246939), and by the European Union project ASCENS (n. 257414). M. Dorigo acknowledges support from the Belgian F.R.S.-FNRS.


  1. 1.
    C. Balaguer and M. Abderrahim, Robotics and Automation in Construction. InTech, 2008.Google Scholar
  2. 2.
    N. Napp, O. R. Rappoli, J. M. Wu, and R. Nagpal, “Materials and mechanisms for amorphous robotic construction,” in Proc. of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4879–4885, 2012.Google Scholar
  3. 3.
    G. A. Smithers, M. K. Nehls, M. A. Hovater, S. W. Evans, J. S. Miller, R. M. B. Jr, D. Beale, and F. Kilinc-Balci, “A one-piece lunar regolith bag garage prototype,” NASA Tech. Rep., 2007.Google Scholar
  4. 4.
    N. Khalili, Emergency Sandbag Shelter and Eco-Village: Manual-How to Build Your Own with Superadobe/Earthbags. Cal Earth Press, 2011.Google Scholar
  5. 5.
    R. Cannon, S. Henninger, M. Levandoski, J. Perkins, J. Pitchon, R. Swats, and R. Wessels, “Lunar regolith bagging system,” NASA Tech. Rep., 1990.Google Scholar
  6. 6.
    C. A. Theriot, B. Gersey, E. Bacon, Q. Johnson, Y. Zhang, J. Norman, I. Foley, R. Wilkins, J. Zhou, and H. Wu, “Potential use of in situ material composites such as regolith/polyethylene for shielding space radiation,” NASA Tech. Rep., 2010.Google Scholar
  7. 7.
    J. Werfel, K. Petersen, and R. Nagpal, “Designing collective behavior in a termite-inspired robot construction team,” Science, vol. 343, no. 6172, pp. 754–758, 2014.Google Scholar
  8. 8.
    G. Theraulaz, J. Gautrais, S. Camazine, and J.-L. Deneubourg, “The formation of spatial patterns in social insects: from simple behaviours to complex structures,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 361, no. 1807, pp. 1263–1282, 2003.Google Scholar
  9. 9.
    E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence. Oxford University Press, New York, 1999.Google Scholar
  10. 10.
    R. A. Brooks, P. Maes, M. J. Matarić, and G. More, “Lunar base construction robots,” in Proc. of the 1990 IEEE International Workshop on Intelligent Robots and Systems ‘Towards a New Frontier of Applications’ (IROS), pp. 389–392, 1990.Google Scholar
  11. 11.
    C. Melhuish, J. Welsby, and C. Edwards, “Using templates for defensive wall building with autonomous mobile ant-like robots,” in Proc. of Towards Intelligent Autonomous Mobile Robots, 1999.Google Scholar
  12. 12.
    J. Wawerla, G. S. Sukhatme, and M. J. Matarić, “Collective construction with multiple robots,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2696–2701, 2002.Google Scholar
  13. 13.
    Q. Lindsey, D. Mellinger, and V. Kumar, “Construction with quadrotor teams,” Autonomous Robots, vol. 33, no. 3, pp. 323–336, 2012.Google Scholar
  14. 14.
    J. Willmann, F. Augugliaro, T. Cadalbert, R. D’Andrea, F. Gramazio, and M. Kohler, “Aerial robotic construction towards a new field of architectural research,” International Journal of Architectural Computing, vol. 10, no. 3, pp. 439–460, 2012.Google Scholar
  15. 15.
    S. Wismer, G. Hitz, M. Bonani, A. Gribovskiy, and S. Magnenat, “Autonomous construction of a roofed structure: Synthesizing planning and stigmergy on a mobile robot,” in Proc. of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5436–5437, 2012.Google Scholar
  16. 16.
    K. Petersen, R. Nagpal, and J. Werfel, “TERMES: An autonomous robotic system for three-dimensional collective construction,” in Proc. of Robotics: Science and Systems, VIII, MIT press, 2011.Google Scholar
  17. 17.
    N. Napp and R. Nagpal, “Distributed amorphous ramp construction in unstructured environments,” in Proc. of the Symposium on Distributed Autonomous Robotic Systems (DARS), 105–119, 2012.Google Scholar
  18. 18.
    S. Revzen, M. Bhoite, A. Macasieb, and M. Yim, “Structure synthesis on-the-fly in a modular robot,” in Proc. of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4797–4802, 2011.Google Scholar
  19. 19.
    B. Khoshnevis, M. P. Bodiford, K. H. Burks, E. Ethridge, D. Tucker, W. Kim, H. Toutanji, and M. R. Fiske, “Lunar contour crafting-a novel technique for ISRU-based habitat development,” in Proc. of American Institute of Aeronautics and Astronautics (AIAA) Conference, 2005.Google Scholar
  20. 20.
    M. Bonani et al., “The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research,” in Proc. of the 2010 IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS), pp. 4187–4193, 2010.Google Scholar
  21. 21.
    M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A. L. Christensen, A. Decugnière, G. Di Caro, F. Ducatelle, E. Ferrante, A. Förster, J. Guzzi, V. Longchamp, S. Magnenat, J. Martinez Gonzales, N. Mathews, M. Montes de Oca, R. O’Grady, C. Pinciroli, G. Pini, P. Rétornaz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stützle, V. Trianni, E. Tuci, A. E. Turgut, and F. Vaussard, “Swarmanoid: A novel concept for the study of heterogeneous robotic swarms,” Robotics and Automation Magazine, IEEE, vol. 20, pp. 60–71, Dec 2013.Google Scholar
  22. 22.
    S. Magnenat, R. Philippsen, and F. Mondada, “Autonomous construction using scarce resources in unknown environments,” Autonomous Robots, vol. 33, no. 4, pp. 467–485, 2012.Google Scholar
  23. 23.
    M. P. Wand and M. C. Jones, Kernel smoothing, vol. 60. CRC Press, 1994.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Touraj Soleymani
    • 1
    Email author
  • Vito Trianni
    • 2
  • Michael Bonani
    • 3
  • Francesco Mondada
    • 3
  • Marco Dorigo
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBruxellesBelgium
  2. 2.ISTCNational Research CouncilRomeItaly
  3. 3.LSROÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations