Nonparametric Calibration for Depth Sensors

  • Maurilio Di Cicco
  • Luca Iocchi
  • Giorgio Grisetti
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)

Abstract

In this paper, we propose a quick and easy approach to estimate the undistortion function of RGBD sensors. Our method does not rely on the knowledge of the sensor model, on the use of a specific calibration pattern or on external SLAM systems to track the device position. We compute a nonparametric approximation of the undistortion function by applying regression methods to calibration data that can be acquired wherever a sufficiently large planar surface is observed. The procedure is fast, easy, and be used on-line. Experimental results show a significant improvement when using undistorted images in applications like mapping.

References

  1. 1.
    Fuchs, S., Hirzinger, G.: Extrinsic and depth calibration of tof-cameras. In: Proc. of the IEEE Conf. on Comp. Vision and Pattern Recognition (CVPR). (2008)Google Scholar
  2. 2.
    Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. Intelligent Transportation Systems Magazine, IEEE 2(4) (2010) 31–43Google Scholar
  3. 3.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: Rgb-d mapping: Using kinect-style depth cameras for dense 3d modeling of indoor environments. ijrr 31 (2012)Google Scholar
  4. 4.
    Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA). (2011)Google Scholar
  5. 5.
    Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: Proc. of the Int. Symposium on Mixed and Augmented Reality (ISMAR). (2011)Google Scholar
  6. 6.
    Nguyen, C., Izadi, S., Lovell, D.: Modeling kinect sensor noise for improved 3d reconstruction and tracking. In: 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012 Second International Conference on. (2012)Google Scholar
  7. 7.
    Ruhnke, M., Kümmerle, R., Grisetti, G., Burgard, W.: Highly accurate 3d surface models by sparse surface adjustment. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA). (2012)Google Scholar
  8. 8.
    Segal, A.V., Haehnel, D., Thrun, S.: Generalized-ICP. In: Proc. of Robotics: Science and Systems (RSS). (2009)Google Scholar
  9. 9.
    Smisek, J., Jancosek, M., Pajdla, T.: 3d with kinect. In: ICCVws. (2011)Google Scholar
  10. 10.
    Steinbrücker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images. In: ICCV Workshops. (2011)Google Scholar
  11. 11.
    Teichman, A., Miller, S., Thrun, S.: Unsupervised intrinsic calibration of depth sensors via SLAM. In: Robotics: Science and Systems. (2013)Google Scholar
  12. 12.
    Yamazoe, H., Habe, H., Mitsugami, I., Yagi, Y.: Easy depth sensor calibration. In: Pattern Recognition (ICPR), 2012 21st International Conference on. (2012)Google Scholar
  13. 13.
    Zhang, C., Zhang, Z.: Calibration between depth and color sensors for commodity depth cameras. In: Multimedia and Expo (ICME), 2011 IEEE Int. Conf. on. (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maurilio Di Cicco
    • 1
  • Luca Iocchi
    • 1
  • Giorgio Grisetti
    • 1
  1. 1.Dept. of Computer, Control and Management EngineeringSapienza University of RomeRomeItaly

Personalised recommendations