Construction of 3D Environment Models by Fusing Ground and Aerial Lidar Point Cloud Data

  • Marco Langerwisch
  • Marc Steven Krämer
  • Klaus-Dieter Kuhnert
  • Bernardo Wagner
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)

Abstract

A lot of research work deals with the building of 3D environment models, e.g. by lidar-based 6D SLAM on ground vehicles. Because these single vehicle approaches always are afflicted by partial occlusion of the environment, we propose to fuse point cloud data taken by ground and aerial vehicles. Therefore, we use manually steered ground and aerial vehicles equipped with localization sensors and laser scanners to record point cloud data. The point cloud data is fused predominantly by existing state-of-the-art algorithms and data formats in ROS. Finally, Octomaps are calculated as common environment models. Two real world experiments in structured and unstructured outdoor environments are presented. The resulting point clouds and maps are evaluated qualitatively and quantitatively.

Keywords

3D lidar point clouds unmanned aerial vehicles sensor data fusion octomaps 6DoF SLAM 

References

  1. 1.
    Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992).CrossRefGoogle Scholar
  2. 2.
    Carlberg, M., Andrews, J., Gao, P., Zakhor, A.: Fast surface reconstruction and segmentation with ground-based and airborne lidar range data. In: Fourth International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT) (2008).Google Scholar
  3. 3.
    Elseberg, J., Borrmann, D., Nüchter, A.: 6DOF semi-rigid SLAM for mobile scanning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1865–1870 (2012).Google Scholar
  4. 4.
    Elseberg, J., Borrmann, D., Nüchter, A.: One billion points in the cloud - an octree for efficient processing of 3d laser scans. ISPRS Journal of Photogrammetry and Remote Sensing 76, 76–88 (2013), terrestrial 3D modelling.Google Scholar
  5. 5.
    Früh, C., Zakhor, A.: Constructing 3d city models by merging aerial and ground views. Computer Graphics and Applications, IEEE 23(6), 52–61 (Nov 2003)CrossRefGoogle Scholar
  6. 6.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: Octomap: an efficient probabilistic 3d mapping framework based on octrees. Autonomous Robots 34(3), 189–206 (2013).CrossRefGoogle Scholar
  7. 7.
    Persson, M., Duckett, T., Lilienthal, A.J.: Fusion of aerial images and sensor data from a ground vehicle for improved semantic mapping. Robotics and Autonomous Systems 56(6), 483–492 (2008).CrossRefGoogle Scholar
  8. 8.
    Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing icp variants on real-world data sets. Autonomous Robots 34(3), 133–148 (2013).CrossRefGoogle Scholar
  9. 9.
    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009).Google Scholar
  10. 10.
    Schadler, M., Stückler, J., Behnke, S.: Rough terrain 3d mapping and navigation using a continuously rotating 2d laser scanner. KI - Knstliche Intelligenz pp. 1–7 (2014).Google Scholar
  11. 11.
    Wulf, O., Nüchter, A., Hertzberg, J., Wagner, B.: Benchmarking urban six-degree-of-freedom simultaneous localization and mapping. Journal of Field Robotics 25(3), 148–163 (2008).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Langerwisch
    • 1
  • Marc Steven Krämer
    • 2
  • Klaus-Dieter Kuhnert
    • 2
  • Bernardo Wagner
    • 1
  1. 1.Leibniz Universität HannoverReal Time Systems Group (RTS)HannoverGermany
  2. 2.University of SiegenInstitute of Real-Time Learning Systems (EZLS)SiegenGermany

Personalised recommendations