Engineering Approaches and Methods to Verify Software in Autonomous Systems

  • G. Cicala
  • A. Khalili
  • G. Metta
  • L. Natale
  • S. Pathak
  • L. Pulina
  • A. TacchellaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)


We present three computer-augmented software engineering approaches to ensure dependability at different levels of control architectures in autonomous robots. For each approach, we outline the methodological framework, our current achievements, and open issues. Albeit our results are still preliminary, we believe that furthering research along these lines can provide cost-effective techniques to make autonomous robots safe and thus fit for commercial purposes.


Dependable control architectures Software verification and testing Autonomous robots 


  1. 1.
    M. Bajracharya, M. Maimone, and D. Helmick. Autonomy for mars rovers: Past, present, and future. Computer, 41(12):44–50, 2008.Google Scholar
  2. 2.
    M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner, D. Pangercic, T. Ruhr, and M. Tenorth. Robotic roommates making pancakes. In Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on, pages 529–536. IEEE, 2011.Google Scholar
  3. 3.
    G. Pratt and J. Manzo. The DARPA Robotics Challenge [Competitions]. Robotics & Automation Magazine, IEEE, 20(2):10–12, 2013.Google Scholar
  4. 4.
    C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G.J. Pappas. Symbolic planning and control of robot motion [grand challenges of robotics]. Robotics & Automation Magazine, IEEE, 14(1):61–70, 2007.Google Scholar
  5. 5.
    R. Jhala and R. Majumdar. Software model checking. ACM Computing Surveys (CSUR), 41(4):21, 2009.Google Scholar
  6. 6.
    S. Scherer, F. Lerda, and E. M. Clarke. Model checking of robotic control systems. In Proceedings of ISAIRAS 2005 Conference, pages 5–8, 2005.Google Scholar
  7. 7.
    M. Shahbaz. Reverse Engineering Enhanced State Models of Black Box Software Components to Support Integration Testing. PhD thesis, Institut Polytechnique de Grenoble, Grenoble, France, 2008.Google Scholar
  8. 8.
    A. Khalili and A. Tacchella. AIDE: Automata-Identification Engine.
  9. 9.
    P. Fitzpatrick, G. Metta, and L. Natale. Towards long-lived robot genes. Robotics and Autonomous systems, 56(1):29–45, 2008.Google Scholar
  10. 10.
    R.S. Sutton and A.G. Barto. Reinforcement Learning - An Introduction. MIT Press, 1998.Google Scholar
  11. 11.
    J.A. Bagnell and S. Schaal. Special issue on Machine Learning in Robotics (Editorial). The International Journal of Robotics Research, 27(2):155–156, 2008.Google Scholar
  12. 12.
    J.H. Gillula and C.J. Tomlin. Guaranteed Safe Online Learning via Reachability: tracking a ground target using a quadrotor. In ICRA, pages 2723–2730, 2012.Google Scholar
  13. 13.
    M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. Formal methods for performance evaluation, pages 220–270, 2007.Google Scholar
  14. 14.
    Rudolf Emil Kalman et al. Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana, 5(2):102–119, 1960.Google Scholar
  15. 15.
    P. Lancaster and L. Rodman. Algebraic riccati equations. Oxford University Press, 1995.Google Scholar
  16. 16.
    MATLAB. version 8.1.0 (R2013a). The MathWorks Inc., Natick, Massachusetts, 2013.Google Scholar
  17. 17.
    L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-Based Bounded Model Checking for Embedded ANSI-C Software. Int.l Conf. on Automated Software Engineering, pages 137–148, 2009.Google Scholar
  18. 18.
    N. Mohamed, J. Al-Jaroodi, and I. Jawhar. Middleware for robotics: A survey. In Robotics, Automation and Mechatronics, 2008 IEEE Conference on, pages 736–742. IEEE, 2008.Google Scholar
  19. 19.
    G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. von Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, et al. The iCub Humanoid Robot: An Open-Systems Platform for Research in Cognitive Development. Neural networks: the official journal of the International Neural Network Society, 2010.Google Scholar
  20. 20.
    M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng. ROS: an open-source Robot Operating System. In ICRA workshop on open source software, volume 3, 2009.Google Scholar
  21. 21.
    D. Angluin. Learning regular sets from queries and counterexamples. Information and computation, 75(2):87–106, 1987.Google Scholar
  22. 22.
    A. Gargantini. Conformance testing. Model-Based Testing of Reactive Systems, pages 87–111, 2005.Google Scholar
  23. 23.
    O. Niese. An integrated approach to testing complex systems. PhD thesis, Universität Dortmund, Dortmund, Germany, December 2003.Google Scholar
  24. 24.
    F. Aarts and F. Vaandrager. Learning I/O automata. CONCUR 2010-Concurrency Theory, pages 71–85, 2010.Google Scholar
  25. 25.
    A. Khalili and A. Tacchella. Learning nondeterministic Mealy machines. Technical report, University of Genoa, 2013.Google Scholar
  26. 26.
    D. C. Bentivegna, C. G. Atkeson A. Ude, and G. Cheng. Learning to Act from Observation and Practice. International Journal of Humanoid Robotics, 1(4), December 2004.Google Scholar
  27. 27.
    G. Metta, L. Natale, S. Pathak, L. Pulina, and A. Tacchella. Safe and effective learning: A case study. In ICRA, pages 4809–4814, 2010.Google Scholar
  28. 28.
    S. Pathak, L. Pulina, G. Metta, and A. Tacchella. Ensuring safety of policies learned by reinforcement: Reaching objects in the presence of obstacles with the iCub. In IROS, pages 170–175, 2013.Google Scholar
  29. 29.
    E. Abrahám, N. Jansen, R. Wimmer, J. Katoen, and B. Becker. DTMC model checking by SCC reduction. In Quantitative Evaluation of Systems (QEST), 2010 Seventh International Conference on the, pages 37–46. IEEE, 2010.Google Scholar
  30. 30.
    J.P. Katoen, I.S. Zapreev, E.M. Hahn, H. Hermanns, and D.N. Jansen. The ins and outs of the probabilistic model checker MRMC. Performance evaluation, 68(2):90–104, 2011.Google Scholar
  31. 31.
    M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model checker. Computer Performance Evaluation: Modelling Techniques and Tools, pages 113–140, 2002.Google Scholar
  32. 32.
    L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to Verification of Artificial Neural Networks. In 22nd International Conference on Computer Aided Verification (CAV 2010), volume 6174 of Lecture Notes in Computer Science, pages 243–257. Springer, 2010.Google Scholar
  33. 33.
    X.C. Ding, S.L. Smith, C. Belta, and D. Rus. MDP optimal control under temporal logic constraints. In Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pages 532–538. IEEE, 2011.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • G. Cicala
    • 2
  • A. Khalili
    • 1
    • 2
  • G. Metta
    • 1
  • L. Natale
    • 1
  • S. Pathak
    • 1
    • 2
  • L. Pulina
    • 3
  • A. Tacchella
    • 2
    Email author
  1. 1.iCub Facility, Istituto Italiano di Tecnologia (IIT)GenovaItaly
  2. 2.DIBRIS, Università degli Studi di GenovaGenovaItaly
  3. 3.POLCOMING, Università degli Studi di SassariSassariItaly

Personalised recommendations