Improving Personalization and Contextualization of Queries to Knowledge Bases Using Spreading Activation and Users’ Feedback

  • Ana Belen Pelegrina
  • Maria J. Martin-Bautista
  • Pamela Faber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8502)

Abstract

Facilitating knowledge acquisition when users are consulting knowledge bases (KB) is often a challenge, given the large amount of data contained. Providing users with appropriate contextualization and personalization of the content of KBs is a way to try to achieve this goal. This paper presents a mechanism intended to provide contextualization and personalization of queries to KBs based on collected data regarding users’ preferences, both implicitly (users’ profiles) and explicitly (users’ feedback). This mechanism combines user data with a spreading activation (SA) algorithm to generate the contextualization. The initial positive results of the evaluation of the contextualization are presented in this paper.

Keywords

Knowledge base spreading activation user feedback contextualization personalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferragina, P., Gulli, A.: A personalized search engine based on web-snippet hierarchical clustering. Software: Practice and Experience 38(2), 189–225 (2008)Google Scholar
  2. 2.
    Han, L., Chen, G.: A fuzzy clustering method of construction of ontology-based user profiles. Advances in Engineering Software 40(7), 535–540 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Widyantoro, D., Yen, J.: Using fuzzy ontology for query refinement in a personalized abstract search engine. In: International Joint Conference on 9th IFSA World Congress and 20th NAFIPS 2001, vol. 1, pp. 610–615 (July 2001)Google Scholar
  4. 4.
    Kim, K.J., Cho, S.B.: Personalized mining of web documents using link structures and fuzzy concept networks. Applied Soft Computing 7(1), 398–410 (2007)CrossRefGoogle Scholar
  5. 5.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Communications of the ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  6. 6.
    Mulvenna, M.D., Anand, S.S., Büchner, A.G.: Personalization on the net using web mining: Introduction. Communications of the ACM 43(8), 122–125 (2000)CrossRefGoogle Scholar
  7. 7.
    Katifori, A., Vassilakis, C., Dix, A.: Ontologies and the brain: Using spreading activation through ontologies to support personal interaction. Cognitive Systems Research 11(1), 25–41 (2010)CrossRefGoogle Scholar
  8. 8.
    Pelegrina, A.B., Martin-Bautista, M.J., Faber, P.: Contextualization and personalization of queries to knowledge bases using spreading activation. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS, vol. 8132, pp. 671–682. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Reimerink, A., Faber, P.: Ecolexicon: A frame-based knowledge base for the environment. In: Proceedings of the International Conference “Towards eEnvironment”, pp. 25–27 (2009)Google Scholar
  10. 10.
    Anderson, J.R.: A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior 22(3), 261–295 (1983)CrossRefGoogle Scholar
  11. 11.
    Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing. Psychological Review 82(6), 407 (1975)CrossRefGoogle Scholar
  12. 12.
    Crestani, F.: Application of spreading activation techniques in information retrieval. Artificial Intelligence Review (1997)Google Scholar
  13. 13.
    Preece, S.E.: Spreading activation network model for information retrieval. Dissertation Abstracts International Part B: Science and Engineering 42(9) (1982)Google Scholar
  14. 14.
    Crestani, F., Lee, P.L.: Searching the web by constrained spreading activation. Information Processing & Management 36(4), 585–605 (2000)CrossRefGoogle Scholar
  15. 15.
    Jiang, X., Tan, A.H.: Learning and inferencing in user ontology for personalized Semantic Web search. Information Sciences 179(16), 2794–2808 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Sieg, A., Mobasher, B., Burke, R.: Ontological User Profiles for Representing Context in Web Search. In: 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology - Workshops, pp. 91–94. IEEE (November 2007)Google Scholar
  17. 17.
    Sieg, A., Mobasher, B., Burke, R.: Improving the effectiveness of collaborative recommendation with ontology-based user profiles. In: Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems - HetRec 2010, pp. 39–46. ACM Press, New York (2010)CrossRefGoogle Scholar
  18. 18.
    Sieg, A., Mobasher, B., Burke, R.: Ontology-Based Collaborative Recommendation. In: ITWP (2010)Google Scholar
  19. 19.
    Teufl, P., Payer, U., Parycek, P.: Automated analysis of e-participation data by utilizing associative networks, spreading activation and unsupervised learning. In: Macintosh, A., Tambouris, E. (eds.) ePart 2009. LNCS, vol. 5694, pp. 139–150. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Collins, C., Carpendale, S.: Vislink: Revealing relationships amongst visualizations. IEEE Transactions on Visualization and Computer Graphics 13(6), 1192–1199 (2007)CrossRefGoogle Scholar
  21. 21.
    Kuß, A., Prohaska, S., Meyer, B., Rybak, J., Hege, H.C.: Ontology-based visualization of hierarchical neuroanatomical structures. Proc. Vis. Comp. Biomed, 177–184 (2008)Google Scholar
  22. 22.
    Stumpf, S., Rajaram, V., Li, L., Burnett, M., Dietterich, T., Sullivan, E., Drummond, R., Herlocker, J.: Toward harnessing user feedback for machine learning. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, IUI 2007, pp. 82–91. ACM, New York (2007)Google Scholar
  23. 23.
    Shapira, B.: Recommender systems handbook. Springer (2011)Google Scholar
  24. 24.
    Shoval, P.: Expert/consultation system for a retrieval data-base with semantic network of concepts. In: ACM SIGIR Forum, vol. 16, pp. 145–149. ACM (1981)Google Scholar
  25. 25.
    Hasan, M.M.: A spreading activation framework for ontology-enhanced adaptive information access within organisations. In: van Elst, L., Dignum, V., Abecker, A. (eds.) AMKM 2003. LNCS (LNAI), vol. 2926, pp. 288–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Hussein, T., Ziegler, J.: Adapting web sites by spreading activation in ontologies. In: Proceedings of International Workshop on Recommendation and Collaboration, New York, USA (2008)Google Scholar
  27. 27.
    León Araúz, P., Magaña Redondo, P.: Ecolexicon: Contextualizing an environmental ontology. In: Proceedings of the Terminology and Knowledge Engineering (TKE) Conference 2010, pp. 341–355 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ana Belen Pelegrina
    • 1
  • Maria J. Martin-Bautista
    • 2
  • Pamela Faber
    • 1
  1. 1.Department of Translation and InterpretingUniversity of GranadaSpain
  2. 2.Department of Computer Science and Artificial IntelligenceUniversity of GranadaSpain

Personalised recommendations