Advertisement

On the Vulnerability of Low Entropy Masking Schemes

  • Xin Ye
  • Thomas Eisenbarth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8419)

Abstract

Low Entropy Masking Schemes (LEMS) have been proposed to offer a reasonable tradeoff between the good protection against side-channel attacks offered by masking countermeasures and the high overhead that results from their implementation. Besides the limited analysis done in the original proposals of LEMS, their specific leakage characteristics have not yet been analyzed. This work explores the leakage behavior of these countermeasures and shows two different methods how the leakage can be exploited, even by generic univariate attacks. In particular, an attack that exploits specific properties of RSM for AES as well as a more generic attack making very little assumptions about the underlying LEMS are introduced. All attacks are practically verified by applying them to publicly available leakage samples of the RSM countermeasure.

Keywords

Underlying Distribution Side Channel Attack Collision Attack Leakage Model Template Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank the reviewers for the helpful comments. This material is based upon work supported by the National Science Foundation under Grant No. 1261399.

References

  1. 1.
    The dpa contest v4. http://www.dpacontest.org/v4/
  2. 2.
    Bhasin, S., He, W., Guilley, S., Danger, J.-L.: Exploiting fpga block memories for protected cryptographic implementations. In: 2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC) (2013)Google Scholar
  3. 3.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  4. 4.
    Coron, J.-S., Goubin, L.: On boolean and arithmetic masking against differential power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 231–237. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  5. 5.
    Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. J. Crypt. Eng. 1, 123–144 (2011)CrossRefGoogle Scholar
  6. 6.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  7. 7.
    Golic, J., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  8. 8.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  9. 9.
    Lemke-Rust, K., Paar, C.: Analyzing side channel leakage of masked implementations with stochastic methods. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  10. 10.
    Lemke-Rust, K., Paar, C.: Gaussian mixture models for higher-order side channel analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 14–27. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  11. 11.
    Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  12. 12.
    Nassar, M., Guilley, S., Danger, J.-L.: Formal analysis of the entropy/security trade-off in first-order masking countermeasures against side-channel attacks. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 22–39. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  13. 13.
    Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset scas. In: Design, Automation Test in Europe Conference Exhibition (DATE) (2012)Google Scholar
  14. 14.
    Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  15. 15.
    Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  16. 16.
    Prouff, E., Rivain, M.: A generic method for secure SBox implementation. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  17. 17.
    Schaumont, P., Tiri, K.: Masking and dual-rail logic don’t add up. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 95–106. Springer, Heidelberg (2007)Google Scholar
  18. 18.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  19. 19.
    Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  20. 20.
    Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  21. 21.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  22. 22.
    Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  23. 23.
    Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov-Smirnov test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Worcester Polytechnic InstituteWorcesterUSA

Personalised recommendations