Advertisement

From New Technologies to New Solutions

Exploiting FRAM Memories to Enhance Physical Security
  • Stéphanie Kerckhof
  • François-Xavier Standaert
  • Eric Peeters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8419)

Abstract

Ferroelectric RAM (FRAM) is a promising non-volatile memory technology that is now available in low-end microcontrollers. Its main advantages over Flash memories are faster write performances and much larger tolerated number of write/erase cycles. These properties are profitable for the efficient implementation of side-channel countermeasures exploiting pre-computations. In this paper, we illustrate the interest of FRAM-based microcontrollers for physically secure cryptographic hardware with two case studies. First we consider a recent shuffling scheme for the AES algorithm, exploiting randomized program memories. We exhibit significant performance gains over previous results in an Atmel microcontroller, thanks to the fine-grained programmability of FRAM. Next and most importantly, we propose the first working implementation of the “masking with randomized look-up table” countermeasure, applied to reduced versions of the block cipher LED. This implementation provides unconditional security against side-channel attacks (of all orders!) under the assumption that pre-computations can be performed without leakage. It also provides high security levels in cases where this assumption is relaxed (e.g. for context or performance reasons).

Notes

Acknowledgements

Stéphanie Kerckhof is a PhD student funded by a FRIA grant, Belgium. François-Xavier Standaert is a research associate of the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the Walloon region WIST program project MIPSs, by the European Commission through the ERC project 280141 (acronym CRASH) and by the European ISEC action grant HOME/2010/ISEC/AG/INT-011 B-CCENTRE.

References

  1. 1.
    51th Annual IEEE Symposium on Foundations of Computer Science FOCS 2010, Las Vegas, Nevada, USA, pp. 23–26. IEEE Computer Society, 23–26 October 2010Google Scholar
  2. 2.
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: public-key cryptography resilient to continual memory leakage. In: FOCS [1], pp. 501–510Google Scholar
  3. 3.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999) Google Scholar
  4. 4.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS [1], pp. 511–520Google Scholar
  5. 5.
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302. IEEE Computer Society (2008)Google Scholar
  6. 6.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008) Google Scholar
  7. 7.
    Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: how large is the gap for AES? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 400–416. Springer, Heidelberg (2013) Google Scholar
  8. 8.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011) Google Scholar
  9. 9.
    Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006) Google Scholar
  10. 10.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, New York (2007)Google Scholar
  11. 11.
    Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005) Google Scholar
  12. 12.
    Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: security against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Heidelberg (2010) Google Scholar
  13. 13.
    Poettering, B., Furious, R.: http://point-at-infinity.org/avraes/
  14. 14.
    Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010) Google Scholar
  15. 15.
    Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010) Google Scholar
  16. 16.
    Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009) Google Scholar
  17. 17.
    Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013) Google Scholar
  18. 18.
    Standaert, F.-X., Petit, C., Veyrat-Charvillon, N.: Masking with randomized look up tables. In: Naccache, D. (ed.) Cryphtography and Security: From Theory to Applications. LNCS, vol. 6805, pp. 283–299. Springer, Heidelberg (2012) Google Scholar
  19. 19.
    Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The world is not enough: another look on second-order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer, Heidelberg (2010) Google Scholar
  20. 20.
    Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling against side-channel attacks: a comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Stéphanie Kerckhof
    • 1
  • François-Xavier Standaert
    • 1
  • Eric Peeters
    • 2
  1. 1.ICTEAM/ELEN/Crypto GroupUniversité Catholique de LouvainCharleroiBelgium
  2. 2.Texas InstrumentsDallasUSA

Personalised recommendations