Composing JSON-Based Web APIs

  • Javier Luis Cánovas Izquierdo
  • Jordi Cabot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8541)

Abstract

The development of Web APIs has become a discipline that companies have to master to succeed in the Web. The so-called API economy is pushing companies to provide access to their data by means of Web APIs, thus requiring web developers to study and integrate such APIs into their applications. The exchange of data with these APIs is usually performed by using JSON, a schemaless data format easy for computers to parse and use. While JSON data is easy to read, its structure is implicit, thus entailing serious problems when integrating APIs coming from different vendors. Web developers have therefore to understand the domain behind each API and study how they can be composed. We tackle this issue by presenting an approach able to both discover the domain of JSON-based Web APIs and identify composition links among them. Our approach allows developers to easily visualize what is behind APIs and how they can be composed to be used in their applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cánovas Izquierdo, J.L., Cabot, J.: Discovering Implicit Schemas in JSON Data. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 68–83. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Lin, Y., Gray, J., Jouault, F.: DSMDiff: a differentiation tool for domain-specific models. Europ. Inf. Syst. 16(4), 349–361 (2007)CrossRefGoogle Scholar
  3. 3.
    Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for model matching: An analysis of approaches to support model differencing. In: CVSM Conf., pp. 1–6 (2009)Google Scholar
  4. 4.
    Edmonds, J.: Optimum Branchings. J. Res. Nat. Bur. Standards 71B, 233–240 (1967)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nestorov, S., Abiteboul, S., Motwani, R.: Inferring structure in semistructured data. ACM SIGMOD Record 26(4), 39–43 (1997)CrossRefGoogle Scholar
  6. 6.
    Famelis, M., Salay, R., Di Sandro, A., Chechik, M.: Transformation of Models Containing Uncertainty. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 673–689. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Famelis, M., Salay, R., Chechik, M.: Partial models: Towards modeling and reasoning with uncertainty. In: ICSE Conf., pp. 573–583 (2012)Google Scholar
  8. 8.
    Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ohst, D., Welle, M., Kelter, U.: Differences between versions of UML diagrams. In: ACM SIGSOFT Conf., pp. 227–236 (2003)Google Scholar
  10. 10.
    Selonen, P., Kettunen, M.: Metamodel-Based Inference of Inter-Model Correspondence. In: CSMR Conf., pp. 71–80 (2007)Google Scholar
  11. 11.
    Melnik, S., Garcia-molina, H., Rahm, E.: Similarity Flooding: A Versatile Graph Matching Algorithm. In: DE Conf., pp. 117–128 (2002)Google Scholar
  12. 12.
    Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework. UPGRADE, The European Journal for the Informatics Professional 9(2), 29–34 (2008)Google Scholar
  13. 13.
    Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and composition of Semantic Web services. J. Web Sem. 1(1), 27–46 (2003)CrossRefGoogle Scholar
  14. 14.
    Quarteroni, S., Brambilla, M., Ceri, S.: A bottom-up, knowledge-aware approach to integrating and querying web data services. TWEB 7(4), 19 (2013)CrossRefGoogle Scholar
  15. 15.
    Daniel, F., Rodríguez, C., Chowdhury, S.R., Nezhad, H.R.M., Casati, F.: Discovery and reuse of composition knowledge for assisted mashup development. In: WWW Conf., pp. 493–494 (2012)Google Scholar
  16. 16.
    Chowdhury, S.R., Daniel, F., Casati, F.: Efficient, interactive recommendation of mashup composition knowledge. In: ICSOC Conf., pp. 374–388 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Javier Luis Cánovas Izquierdo
    • 1
  • Jordi Cabot
    • 1
  1. 1.AtlanMod, École des Mines de Nantes - INRIA - LINANantesFrance

Personalised recommendations