Advertisement

Agricultural Runoff in Norway: The Problem, the Regulations, and the Role of Wetlands

  • Anne-Grete Buseth Blankenberg
  • Ketil HaarstadEmail author
  • Adam M. Paruch
Chapter

Abstract

Agricultural runoff contains amounts of sediments, nutrients, pesticides, and microbes causing water quality problems. Best Management Practices (BMP) are necessary but often insufficient to achieve the requirements set by the environmental goals in the Water Framework Directive (WFD) and to achieve good water status for all water bodies within 2020.

Here we discuss the problems associated with agricultural runoff in Norway, the regulations, and the role of the wetlands. Despite the fact that constructed wetlands (CWs) in Norway are small, studies have shown that in Nordic climate CWs and vegetated buffer zones in first- and second-order streams are good supplements to BMP when it comes to removing and retaining sediments, nutrients, and pesticides. Having a system of agricultural subsidies allows the authorities some leverage in pursuing environmental and other objectives that would otherwise be difficult.

CWs are an important measure for agriculture runoff, and during the last 20 years, more than 900 CWs were built in Norway. The water quality in agricultural areas is regulated mainly by the Norwegian Pollution Act and the Water Framework Directive. The regulation of pesticides is based on action plans and incentives. Studies have shown that for Nordic climatic conditions wetlands can be as effective as advanced treatment systems in removing pesticides from water. The CWs needs adjustment to local conditions and to the specific pollution to be treated.

Keywords

Agricultural runoff Constructed wetlands Diffuse pollution Sediments Nutrients Phosphorus Nitrogen Pesticides Pathogens 

References

  1. Blankenberg, A.-G. B., Haarstad, K., & Braskerud, B. C. (2007). Pesticide retention in an experimental wetland treating non point source pollution from agriculture run-off. Water Science and Technology, 55(3), 37–44.CrossRefGoogle Scholar
  2. Blankenberg, A.-G. B., Haarstad, K., & Søvik, A.-K. (2008). Nitrogen retention in constructed wetland filters treating diffuse agriculture pollution. Desalination, 226, 114–120.CrossRefGoogle Scholar
  3. Blankenberg, A.-G. B., Tryland, I., Paruch, A., & Robertson, L. (2012). Virkningen av økt nedbør, en følge av klimaendring, på avrenning av tarmbakterier og parasitter fra beiteområder (The effect of heavy rainfall, a consequence of climate change, on runoff of bacteria and parasites from pastures). Vann, 47(1), 28–38. (In Norwegian).Google Scholar
  4. Blankenberg, A.-G. B., Deelstra, J., Øgaard, A. F., & Pedersen, R. (2013). Phosphorus and sediment retention in a constructed wetland. In M. Bechmann & J. Deelstra (Eds.), Agriculture and environment – Long term monitoring in Norway (pp. 299–314). Trondheim: Akademika Publishing.Google Scholar
  5. Borgvang, S.-A., & Tjomsland, T. (2001). Tilførsler av næringssalter til Norges kystområder, beregnet med tilførselsmodellen TEOTIL (Addition of nutrients to the coast of Norway estimated with the model TEOTIL). NIVA report 815/01, TA-1783. (In Norwegian).Google Scholar
  6. Braskerud, B. C., & Blankenberg, A.-G. B. (2005). Phosphorus retention in the Lier wetland. Is living water possible in agricultural areas? Jordforsk book nr. 48/05. 145:126–128. ISSN/ISBN:82-7467-537-1.Google Scholar
  7. Braskerud, B., Tonderski, K., Wedding, B., Bakke, R., Blankenberg, A.-G. B., Ulen, B., & Koskiaho, J. (2005). Can constructed wetlands reduce the diffuse phosphorus loads to eutrophic water in cold temperate regions? Journal of Environmental Quality, 34(6), 2145–2155.Google Scholar
  8. Direktoratsgruppa. (2009). Vanndirektivet: Veileder 01:2009. Klassifisering av miljøtilstand i vann. Økologisk og kjemisk klassifiseringssystem for kystvann, innsjøer og elver i henhold til vannforskriften. 188 pp. (in Norwegian).Google Scholar
  9. Doyle, M. O., & Otte, M. L. (1997). Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environmental Pollution, 96(1), 1–11.CrossRefGoogle Scholar
  10. Elsaesser, D., Blankenberg, A.-G. B., Geist, A., Mæhlum, T., & Schulz, R. (2011). Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: Application of the toxic units approach. Ecological Engineering, 37(6), 955–962.CrossRefGoogle Scholar
  11. Forurensningsloven. (1981). LOV 1981-03-13 nr 06: Lov om vern mot forurensninger og om avfall (in Norwegian). http://www.lovdata.no/all/hl-19810313-006.html. Accessed 16 Oct 2013.
  12. Grønsten, H. A., Øygarden, L., & Skjevdal, R. (2007). Jordarbeiding til høstkorn- effekter på erosjon og avrenning av næringsstoffer. Bioforsk rapport Vol. 2 Nr. 60/2007. 71 pp.Google Scholar
  13. Haarstad, K., & Mæhlum, T. (2008). Pesticides in Norwegian landfill leachate. The Open Environmental and Biological Monitoring Journal, 1, 8–15.CrossRefGoogle Scholar
  14. Haarstad, K., Bavor, J., & Mæhlum, T. (2012). Organic and metallic pollutants in water treatment wetlands: A review. Water Science and Technology, 65(1), 76–99.CrossRefGoogle Scholar
  15. Korseth, A. (2001). Nitrogen dynamics of agro-systems: combinations of modeling and experiments at different spatial and temporal scales. PhD theses 2001:16. ISSN:0802–3220. ISBN 82-575-0464-5, Agriculture University of Norway, Ås.Google Scholar
  16. Øygarden, L. (2000). Seasonal variations in soil erosion in small agricultural catchments in south-eastern Norway. In L. Øygarden (Ed.), Soil erosion in small agricultural catchments, south-eastern Norway. PhD thesis 200:8, Agricultural University of Norway.Google Scholar
  17. Paruch, A. M. (2010). Possible scenarios of environmental transport, occurrence and fate of helminth eggs in light weight aggregate wastewater treatment systems. Reviews in Environmental Science and Biotechnology, 9(1), 51–58.CrossRefGoogle Scholar
  18. Paruch, A. M., & Mæhlum, T. (2012). Specific features of Escherichia coli that distinguish it from coliform and thermotolerant coliform bacteria and define it as the most accurate indicator of faecal contamination in the environment. Ecological Indicators, 23, 140–142.CrossRefGoogle Scholar
  19. Scholz, M., Hohn, P., & Minall, R. (2002). Mature experimental constructed wetlands treating urban water receiving high metal loads. Biotechnology Progress, 18(6), 1257–1264.CrossRefGoogle Scholar
  20. Selvik, J. R., Tjomsland, T., Borgvang, S. A., & Eggestad, H. O. (2006). Tilførsler av næringsstoffer til Norges kystområder i 2005, beregnet med tilførselsmodellen TEOTIL2. NIVA-Report 5330 (In Norwegian).Google Scholar
  21. SFT. (1997). Norwegian system for classification of environmental quality in freshwater. (In Norwegian). Veiledning 97:04, Statens forurensningstilsyn, Oslo, Norway.Google Scholar
  22. Simmelsgaard, S. E. (1998). The effect of crop, N-level, soil type and drainage on nitrate leaching from Danish soil. Soil Use and Management, 14, 30–36.CrossRefGoogle Scholar
  23. Solheim, A. L., Vagstad, N., Kraft, P., Løvstad, Ø., Skoglund, S., Turtumøygard, S., & Selvik, J. R. (2001). Tiltaksanalyse for Morsa (Vansjø-Hobølvassdraget) – Sluttrapport. (Remediation strategies for Morsa (the Vansjø-Hobøl watercourse) – the final report). NIVA-Report 4377. (In Norwegian).Google Scholar
  24. Søvik, A. K., & Syversen, N. (2008). Videreutvikling av vegetasjonssoner som rensefilter for overflateavrenning – Effekt av ulik vegetasjon og variasjon i renseeffekt over tid. Bioforsk rapport, Vol 3, Nr 2, 2008.Google Scholar
  25. Vagstad, N., Stålnacke, P., Andersen, H.-E., Deelstra, J., Jansons, V., Kyllmar, K., Loigu, E., Rekolainen, S., & Tumas, P. (2004). Regional variations in diffuse nitrogen losses from agriculture in the Nordic and Baltic regions. Hydrology and Earth System Sciences, 8(4), 651–662.CrossRefGoogle Scholar
  26. Vannforskriften. (2006). FOR 2006-12-15 nr 1446: Forskrift om rammer for vannforvaltningen (in Norwegian). http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-20061215-1446.html. Accessed 16 Oct 2013.
  27. Von der Ohe, P. C., Dulio, V., Slobodnik, J., De Deckere, E., Kuhne, R., Ebert, R.-U., Ginebreda, A., De Cooman, W., Schuurmann, G., & Brack, W. (2011). A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Science of the Total Environment, 409, 2064–2077.CrossRefGoogle Scholar
  28. Vymazal, J., Balcarova, J., & Dousova, H. (2001). Bacterial dynamics in the sub-surface constructed wetland. Water Science and Technology, 44(11–12), 207–209.Google Scholar
  29. WHO. (2006). Guidelines for the safe use of wastewater, excreta and greywater. Volume 3 wastewater and excreta use in aquaculture. Geneva: World Health Organization.Google Scholar
  30. Ye, Z. H., Whiting, S. N., Lin, Z.-Q., Lytle, C. M., Qian, J. H., & Terry, N. (2001). Removal and distribution of Fe, Mn, Co, and Ni within a constructed wetland treating coal combustion by-product leachate. Journal of Environmental Quality, 30, 1464–1473.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Anne-Grete Buseth Blankenberg
    • 1
  • Ketil Haarstad
    • 1
    Email author
  • Adam M. Paruch
    • 1
  1. 1.Bioforsk, Norwegian Institute for Agricultural and Environmental ResearchAasNorway

Personalised recommendations