dSpliceType: A Multivariate Model for Detecting Various Types of Differential Splicing Events Using RNA-Seq

  • Nan Deng
  • Dongxiao Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8492)


Alternative splicing plays a key role in regulating gene expression. Dysregulated alternative splicing events have been linked to a number of human diseases. Recently, the high-throughput RNA-Seq technology provides unprecedented opportunities and holds a strong promise for better characterizing and dissecting alternative splicing events on a whole transcriptome scale. Therefore, efficient and effective computational methods and tools for detecting differentially spliced genes and events in human disease are urgently needed. We present a novel and efficient computational method, dSpliceType, to detect five most common types of differential splicing events between two conditions using RNA-Seq. dSpliceType is among the first to utilize sequential dependency of normalized base-wise read coverage signals and capture biological variability among replicates using a multivariate statistical model. dSpliceType substantially reduces sequencing biases by taking ratio of normalized RNA-Seq splicing indexes at each nucleotide between disease and control conditions. Our method employs a change-point analysis followed by a parametric statistical test using Schwarz Information Criterion (SIC) on each candidate splicing event for differential splicing event detection. We evaluated and compared the performance of dSpliceType with the other two existing methods, MATS and Cuffdiff. The result demonstrates that dSpliceType is a fast, effective and accurate approach, which can detect various types of differential splicing events from a wide range of expressed genes, including genes with lower abundances. dSpliceType is freely available at http://orleans.cs.wayne.edu/dSpliceType/.


Differential Splicing Detection Next-Generation Sequencing RNA-Seq Multivariate Conditional Gaussian Schwarz Information Criterion Change Point Analysis Hypothesis Testing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anders, S., Reyes, A., Huber, W.: Detecting differential usage of exons from RNA-seq data. Genome Research 22(10), 2008–2017 (2012)CrossRefGoogle Scholar
  2. 2.
    Aschoff, M., Hotz-Wagenblatt, A., Glatting, K.-H., Fischer, M., Eils, R., König, R.: Splicingcompass: differential splicing detection using RNA-Seq data. Bioinformatics 29(9), 1141–1148 (2013)CrossRefGoogle Scholar
  3. 3.
    Chen, J.: Parametric statistical change point analysis. Birkhauser, Boston (2012)CrossRefMATHGoogle Scholar
  4. 4.
    Deng, N., Puetter, A., Zhang, K., Johnson, K., Zhao, Z., Taylor, C., Flemington, E.K., Zhu, D.: Isoform-level microRNA-155 target prediction using RNA-seq. Nucleic Acids Research 39(9), e61 (2011)Google Scholar
  5. 5.
    Deng, N., Sanchez, C.G., Lasky, J.A., Zhu, D.: Detecting splicing variants in idiopathic pulmonary fibrosis from non-differentially expressed genes. PloS One 8(7), e68352 (2013)Google Scholar
  6. 6.
    Deng, N., Zhu, D.: Detecting various types of differential splicing events using RNA-Seq data. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, p. 124. ACM (2013)Google Scholar
  7. 7.
    Eaton, M.L.: Multivariate statistics: a vector space approach. Wiley, New York (1983)MATHGoogle Scholar
  8. 8.
    Gonzàlez-Porta, M., Calvo, M., Sammeth, M., Guigó, R.: Estimation of alternative splicing variability in human populations. Genome Research 22(3), 528–538 (2012)CrossRefGoogle Scholar
  9. 9.
    Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., Sammeth, M.: Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Research 40(20), 10073–10083 (2012)CrossRefGoogle Scholar
  10. 10.
    Hu, Y., Huang, Y., Du, Y., Orellana, C.F., Singh, D., Johnson, A.R., Monroy, A., Kuan, P.F., Hammond, S.M., Makowski, L., et al.: DiffSplice: the genome-wide detection of differential splicing events with RNA-seq. Nucleic Acids Research 41(2), e39 (2013)Google Scholar
  11. 11.
    Katz, Y., Wang, E.T., Airoldi, E.M., Burge, C.B.: Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nature Methods 7(12), 1009–1015 (2010)CrossRefGoogle Scholar
  12. 12.
    Keren, H., Lev-Maor, G., Ast, G.: Alternative splicing and evolution: diversification, exon definition and function. Nature Reviews Genetics 11(5), 345–355 (2010)CrossRefGoogle Scholar
  13. 13.
    Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L.: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14(4), R36 (2013)Google Scholar
  14. 14.
    Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nature Methods 9(4), 357–359 (2012)CrossRefGoogle Scholar
  15. 15.
    Quinlan, A.R., Hall, I.M.: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6), 841–842 (2010)CrossRefGoogle Scholar
  16. 16.
    Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Shen, S., Park, J.W., Huang, J., Dittmar, K.A., Lu, Z.X., Zhou, Q., Carstens, R.P., Xing, Y.: MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Research 40(8), e61 (2012)Google Scholar
  18. 18.
    Singh, D., Orellana, C.F., Hu, Y., Jones, C.D., Liu, Y., Chiang, D.Y., Liu, J., Prins, J.F.: FDM: a graph-based statistical method to detect differential transcription using RNA-seq data. Bioinformatics 27(19), 2633–2640 (2011)CrossRefGoogle Scholar
  19. 19.
    Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., Pachter, L.: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 7(3), 562–578 (2012)CrossRefGoogle Scholar
  20. 20.
    Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Schroth, G.P., Burge, C.B.: Alternative isoform regulation in human tissue transcriptomes. Nature 456(7221), 470–476 (2008)CrossRefGoogle Scholar
  21. 21.
    Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10(1), 57–63 (2009)CrossRefGoogle Scholar
  22. 22.
    Wu, J., Akerman, M., Sun, S., McCombie, W.R., Krainer, A.R., Zhang, M.Q.: SpliceTrap: a method to quantify alternative splicing under single cellular conditions. Bioinformatics 27(21), 3010–3016 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nan Deng
    • 1
  • Dongxiao Zhu
    • 1
  1. 1.Department of Computer ScienceWayne State UniversityDetroitUSA

Personalised recommendations