Structure-Based Analysis of Protein Binding Pockets Using Von Neumann Entropy

  • Negin Forouzesh
  • Mohammad Reza Kazemi
  • Ali Mohades
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8492)

Abstract

Protein binding sites are regions where interactions between a protein and ligand take place. Identification of binding sites is a functional issue especially in structure-based drug design. This paper aims to present a novel feature of protein binding pockets based on the complexity of corresponding weighted Delaunay triangulation. The results demonstrate that candidate binding pockets obtain less relative Von Neumann entropy which means more random scattering of voids inside them.

Keywords

Protein binding site Delaunay triangulation Von Neumann entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seco, J., Luque, J., Barril, X.: Binding Site Detection and Druggability Index from First Principles. Journal of Medicinal Chemistry 52, 2363–2371 (2009)CrossRefGoogle Scholar
  2. 2.
    Pérot, S., Sperandio, O., Miteva, M.A., Camproux, A., Villoutreix, B.O.: Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discovery Today 15, 656–667 (2010)CrossRefGoogle Scholar
  3. 3.
    Hendlich, M., Rippmann, F., Barnickel, G.: LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph. Model. 15, 359–363 (1997)CrossRefGoogle Scholar
  4. 4.
    Huang, B., Schroeder, M.: LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Structural Biology 6, 19–29 (2006)CrossRefGoogle Scholar
  5. 5.
    Weisel, M., Proschak, E., Schneider, G.: PocketPicker: analysis of ligand binding-sites with shape descriptors. Chemistry Central Journal 1 (2007)Google Scholar
  6. 6.
    Laskowsk, R.A.: SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13, 323–330, 307–308 (1995)Google Scholar
  7. 7.
    Brady, G.P., Stouten, P.F.: Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 14, 383–401 (2000)CrossRefGoogle Scholar
  8. 8.
    Edelsbrunner, H., Facello, M., Liang, J.: On the definition and the construction of pockets in macromolecules. Descrete Applied Mathematics 88, 83–102 (1998)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Le Guilloux, V., Schmidtke, P., Tuffery, P.: Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10 (2009)Google Scholar
  10. 10.
    Haung, B.: MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13, 325–330 (2009)CrossRefGoogle Scholar
  11. 11.
    Zhang, Z., Li, Y., Lin, B., Schroeder, M., Huang, B.: Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 27, 2083–2088 (2011)CrossRefGoogle Scholar
  12. 12.
    Laskowski, R.A., Luscombe, N.M., Swindless, M.B., Thornton, J.M.: Protein clefts in molecular recognition and function. Protein Science 5, 2438–2452 (1996)Google Scholar
  13. 13.
    Gao, J., Liu, Q., Kang, H., Cao, Z., Zhu, R.: Comparison of Different Ranking Methods in Protein-Ligand Binding Site Prediction. International Journal of Molecular Science 13, 8752–8761 (2012)CrossRefGoogle Scholar
  14. 14.
    Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J.: CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116–W118 (2006)Google Scholar
  15. 15.
    Dehmer, M., Barbarini, N., Varmuza, K., Graber, A.: A large scale analysis of information-theoretic network complexity measures using chemical structures. PLoS One 4, e8057 (2009)Google Scholar
  16. 16.
    Dehmer, M., Mowshowitz, A.: A history of graph entropy measures. Information Science 181, 57–78 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Passerini, F., Severini, S.: Quantifying complexity in networks: The Von Neumann entropy. IJATS 4, 58–67 (2009)Google Scholar
  18. 18.
    Du, W., Li, X., Li, Y., Severini, S.: A note on the von Neumann entropy of random graphs. Linear Algebra and its Application (2010)Google Scholar
  19. 19.
    Dai, T., Liu, Q., Gao, J., Cao, Z., Zhu, R.: A new protein-ligand binding sites prediction method based on the integration of protein sequence conservation information. BMC Bioinformatics 12(suppl. 14), S9 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Negin Forouzesh
    • 1
  • Mohammad Reza Kazemi
    • 1
  • Ali Mohades
    • 1
  1. 1.Laboratory of Algorithm and Computational Geometry, Department of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran

Personalised recommendations