Multiple RNA Interaction with Sub-optimal Solutions

  • Syed Ali Ahmed
  • Saad Mneimneh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8492)


The interaction of two RNA molecules involves a complex interplay between folding and binding that warranted recent developments in RNA-RNA interaction algorithms. However, biological mechanisms in which more than two RNAs take part in an interaction exist. It is reasonable to believe that interactions involving multiple RNAs are generally more complex to be treated pairwise. In addition, given a pool of RNAs, it is not trivial to predict which RNAs are interacting without sufficient biological knowledge. Therefore, structures resulting from multiple RNA interactions often cannot be predicted by the existing algorithms.

We recently proposed a system for multiple RNA interaction that overcomes the difficulties mentioned above by formulating a combinatorial optimization problem called Pegs and Rubber Bands. A solution to this problem encodes a structure of interacting RNAs. In general, however, the optimal solution obtained does not necessarily correspond to the actual structure observed experimentally. Moreover, a structure produced by interacting RNAs may not be unique. In this work, we extend our previous approach to generate multiple sub-optimal solutions. By clustering these solutions, we are able to reveal representatives that correspond to realistic structures. Specifically, our results on the U2-U6 complex in the spliceosome of yeast and the CopA-CopT complex in E. Coli are consistent with published biological structures.


Interaction Pattern Rubber Band Polynomial Time Approximation Scheme Jaccard Distance Base Pairing Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pervouchine, D.D.: Iris: Intermolecular RNA interaction search. In: 15th International Conference on Genome Informatics (2004)Google Scholar
  2. 2.
    Alkan, C., Karakoc, E., Nadeau, J.H., Sahinalp, S.C., Zhang, K.: RNA-RNA interaction prediction and antisense RNA target search. Journal of Computational Biology 13(2) (2006)Google Scholar
  3. 3.
    Mneimneh, S.: On the approximation of optimal structures for RNA-RNA interaction. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2009)Google Scholar
  4. 4.
    Meyer, I.M.: Predicting novel RNA-RNA interactions. Current Opinions in Structural Biology 18 (2008)Google Scholar
  5. 5.
    Kolb, F.A., Malmgren, C., Westhof, E., Ehresmann, C., Ehresmann, B., Wagner, E.G.H., Romby, P.: An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. RNA Society (2000)Google Scholar
  6. 6.
    Argaman, L., Altuvia, S.: fhla repression by oxys: Kissing complex formation at two sites results in a stable antisense-target RNA complex. Journal of Molecular Biology 300 (2000)Google Scholar
  7. 7.
    Muckstein, U., Tafer, H., Hackermuller, J., Bernhart, S.H., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. In: Journal of Bioinformatics (2006)Google Scholar
  8. 8.
    Chitsaz, H., Backofen, R., Sahinalp, S.C.: biRNA: Fast RNA-RNA binding sites prediction. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 25–36. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Chitsaz, H., Salari, R., Sahinalp, S.C., Backofen, R.: A partition function algorithm for interacting nucleic acid strands. Journal of Bioinformatics (2009)Google Scholar
  10. 10.
    Salari, R., Backofen, R., Sahinalp, S.C.: Fast prediction of RNA-RNA interaction. Algorithms for Molecular Biology 5(5) (2010)Google Scholar
  11. 11.
    Huang, F.W.D., Qin, J., Reidys, C.M., Stadler, P.F.: Partition function and base pairing probabilities for RNA-RNA interaction prediction. Journal of Bioinformatics 25(20) (2009)Google Scholar
  12. 12.
    Li, A.X., Marz, M., Qin, J., Reidys, C.M.: RNA-RNA interaction prediction based on multiple sequence alignments. In: Journal of Bioinformatics (2010)Google Scholar
  13. 13.
    Sun, J.S., Manley, J.L.: A novel u2-u6 snrna structure is necessary for mammalian MRNA splicing. Genes and Development 9 (1995)Google Scholar
  14. 14.
    Andronescu, M., Chuan, Z.Z., Codon, A.: Secondary structure prediction of interacting RNA molecules. Journal of Molecular Biology 345(5) (2005)Google Scholar
  15. 15.
    Dirks, R.M., Bois, J.S., Schaffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Review 49(1) (2007)Google Scholar
  16. 16.
    McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Journal of Biopolymers 29(6-7) (1990)Google Scholar
  17. 17.
    Chen, H.L., Codon, A., Jabbari, H.: An o(n 5) algorithm for mfa prediction of kissing hairpins and 4-chains in nucleic acids. Journal of Computational Biology 16(6) (2009)Google Scholar
  18. 18.
    Ahmed, S.A., Mneimneh, S., Greenbaum, N.L.: A combinatorial approach for multiple RNA interaction: Formulations, approximations, and heuristics. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 421–433. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Cormen, T., Leiserson, C.E., Rivest, R.L., Stein, C.: Approximation Algorithms in Introduction to Algorithms. MIT Press (2010)Google Scholar
  20. 20.
    Tong, W., Goebel, R., Liu, T., Lin, G.: Approximation algorithms for the maximum multiple RNA interaction problem. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 49–59. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Jaccard, P.: Bulletin de la Societe Vaudoise des Sciences Naturelles 38(69) (1902)Google Scholar
  22. 22.
    Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady (10), 70710 (1966)Google Scholar
  23. 23.
    Newby, M.I., Greenbaum, N.L.: A conserved pseudouridine modification in eukaryotic u2 snrna induces a change in branch-site architecture. RNA 7(6), 833–845 (2001)CrossRefGoogle Scholar
  24. 24.
    Sashital, D.G., Cornilescu, G., Butcher, S.E.: U2-u6 RNA folding reveals a group ii intron-like domain and a four-helix junction. Nature Structural and Molecular Biology 11(12) (2004)Google Scholar
  25. 25.
    Cao, S., Chen, S.J.: Free energy landscapes of RNA/RNA complexes. Journal of Molecular Biology (357), 292–312 (2006)Google Scholar
  26. 26.
    Kolb, F.A., Slagter-Jager, J.G., Ehresmann, B., Ehressmann, C., Westhof, E., Gerhart, E., Wagner, H., Romby, P.: Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. The EMBO Journal 19(21), 5905–5915 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Syed Ali Ahmed
    • 1
  • Saad Mneimneh
    • 1
  1. 1.The Graduate Center and Hunter CollegeCity University of New YorkNew YorkUSA

Personalised recommendations