A Parallel Scheme for Three-Dimensional Reconstruction in Large-Field Electron Tomography

  • Jingrong Zhang
  • Xiaohua Wan
  • Fa Zhang
  • Fei Ren
  • Xuan Wang
  • Zhiyong Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8492)

Abstract

Large-field high-resolution electron tomography enables visualizing detailed mechanisms under global structure. As field enlarges, the processing time increases and the distortions in reconstruction become more critical. Adopting a nonlinear projection model instead of a linear one can compensate for curvilinear trajectories, nonlinear electron optics and sample warping. But the processing time for the reconstruction with nonlinear projection model is rather considerable. In this work, we propose a new parallel strategy for block iterative reconstruction algorithms. We also adopt a page-based data transfer in this strategy so as to dramatically reduce the processing time for data transfer and communication. We have tested this parallel strategy and it can yield speedups of approximate 40 times according to our experimental results.

Keywords

Electron tomography Three-dimensional reconstruction Iterative methods Nonlinear projection model TxBR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Phan, S., Lawrence, A., Molina, T., Lanman, J., Berlanga, M., Terada, M., Kulungowski, A., Obayashi, J., Ellisman, M.: Txbr montage reconstruction for large field electron tomography. Journal of Structural Biology 180, 154–164 (2012)CrossRefGoogle Scholar
  2. 2.
    Wan, X., Phan, S., Lawrence, A., Zhang, F., Han, R., Liu, Z., Ellisman, M.: Iterative methods in large field electron microscope tomography. SIAM Journal on Scientific Computing 35(5), S402–S419 (2013)Google Scholar
  3. 3.
    Lawrence, A., Phan, S., Singh, R.: Parallel processing and large-field electron microscope tomography. In: World Congress on Computer Science and Information Engineering, pp. 339–343 (2009)Google Scholar
  4. 4.
    Agulleiro, J.I., Fernández, J.J.: Evaluation of a multicore-optimized implementation for tomographic reconstruction. PloS One 7(11), e48261 (2012)Google Scholar
  5. 5.
    Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of Theoretical Biology 36(1), 105–117 (1972)CrossRefGoogle Scholar
  6. 6.
    Censor, Y., Gordon, D., Gordon, R.: Bicav: A block-iterative parallel algorithm for sparse systems with pixel-related weighting. IEEE Transactions on Medical Imaging 20(10), 1050–1060 (2001)CrossRefGoogle Scholar
  7. 7.
    Wan, X., Zhang, F., Chu, Q., Zhang, K., Sun, F., Yuan, B., Liu, Z.: Three-dimensional reconstruction using an adaptive simultaneous algebraic reconstruction technique in electron tomography. Journal of Structural Biology 175(3), 277–287 (2011)CrossRefGoogle Scholar
  8. 8.
    Lawrence, A., Bouwer, J.C., Perkins, G., Ellisman, M.H.: Transform-based backprojection for volume reconstruction of large format electron microscope tilt series. Journal of Structural Biology 154(2), 144–167 (2006)CrossRefGoogle Scholar
  9. 9.
    Censor, Y.: Parallel optimization: theory, algorithms and applications. Oxford University Press (1997)Google Scholar
  10. 10.
    Aharoni, R., Censor, Y.: Block-iterative projection methods for parallel computation of solutions to convex feasibility problems. Linear Algebra and Its Applications 120, 165–175 (1989)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Bilbao-Castro, J.R., Carazo, J.M., Fernandez, J.J., García, I.: Parallelization and comparison of 3d iterative reconstruction algorithms. In: Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network Based Processing, pp. 96–102. IEEE (2004)Google Scholar
  12. 12.
    Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Transactions on Medical Imaging 12(3), 600–609 (1993)CrossRefGoogle Scholar
  13. 13.
    Wan, X., Zhang, F., Chu, Q., Liu, Z.: High-performance blob-based iterative reconstruction of electron tomography on multi-GPUs. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 61–72. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Fernandez, J.: High performance computing in structural determination by electron cryomicroscopy. Journal of Structural Biology 164(1), 1–6 (2008)CrossRefGoogle Scholar
  15. 15.
    Castaño Díez, D., Mueller, H., Frangakis, A.S.: Implementation and performance evaluation of reconstruction algorithms on graphics processors. Journal of Structural Biology 157(1), 288–295 (2007)CrossRefGoogle Scholar
  16. 16.
    Van der Sluis, A., Van der Vorst, H.: Sirt-and cg-type methods for the iterative solution of sparse linear least-squares problems. Linear Algebra and its Applications 130, 257–303 (1990)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jingrong Zhang
    • 1
    • 2
  • Xiaohua Wan
    • 1
  • Fa Zhang
    • 1
  • Fei Ren
    • 1
  • Xuan Wang
    • 3
  • Zhiyong Liu
    • 1
  1. 1.Key Lab. of Intelligent Information Processing, and Advanced Computing Research Lab., Institute of Computing TechnologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Yanshan UniversityChina

Personalised recommendations