Retinal Vessel Segmentation Based on Flower Pollination Search Algorithm

  • E. Emary
  • Hossam M. Zawbaa
  • Aboul Ella Hassanien
  • Mohamed F. Tolba
  • Václav Snášel
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 303)


This paper presents an automated retinal blood vessels segmentation approach based on flower pollination search algorithm (FPSA). The flower pollination search is a new algorithm based on the flower pollination process of flowering plants. The FPSA searches for the optimal clustering of the given retinal image into compact clusters under some constrains. Shape features are used to further enhance the clustering results using local search method. The proposed retinal blood vessels approach is tested on a publicly available databases DRIVE a of retinal images. The results demonstrate that the performance of the proposed approach is comparable with state of the art techniques in terms of accuracy, sensitivity and specificity.


Flower Pollination Search Algorithm Pattern Search Retinal Vessel Segmentation Computer Aided Diagnosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)CrossRefGoogle Scholar
  2. 2.
    Wang, J.J., Taylor, B., Wong, T.Y., Chua, B., Rochtchina, E., Klein, R., Mitchell, P.: Retinal vessel diameters and obesity: a population-based study in older persons. Obesity (Silver Spring) 14(2), 206–214 (2006)CrossRefGoogle Scholar
  3. 3.
    Foracchia, M., Grisan, E., Ruggeri, A.: Extraction and quantitative description of vessel features in hypertensive retinopathy fundus images. In: Book Abstracts of 2nd International Workshop on Computer Assisted Fundus Image Analysis (2011)Google Scholar
  4. 4.
    Mitchell, P., Leung, H., Wang, J.J., Rochtchina, E., Lee, A.J., Wong, T.Y., Klein, R.: Retinal vessel diameter and open-angle glaucoma: the blue mountains eye study. Ophthalmology 112(2), 245–250 (2005)CrossRefGoogle Scholar
  5. 5.
    Goatman, K., Charnley, A., Webster, L., Nussey, S.: Assessment of automated disease detection in diabetic retinopathy screening using two-field photography. PLoS One 6(12), 275–284 (2011)CrossRefGoogle Scholar
  6. 6.
    Heneghan, C., Flynn, J., OKeefe, M., Cahill, M.: Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med. Image Anal. 6, 407–429 (2002)CrossRefGoogle Scholar
  7. 7.
    Lowell, J., Hunter, A., Steel, D., Basu, A., Ryder, R., Kennedy, R.L.: Measurement of retinal vessel widths from fundus images based on 2D modeling. IEEE Trans. Med. Imaging 23, 1196–1204 (2004)CrossRefGoogle Scholar
  8. 8.
    Haddouche, A., Adel, M., Rasigni, M., Conrath, J., Bourennane, S.: Detection of the foveal avascular zone on retinal angiograms using markov random fields. Digital Signal Processing 20, 149–154 (2010)CrossRefGoogle Scholar
  9. 9.
    Grisan, E., Ruggeri, A.: A divide et impera strategy for automatic classification of retinal vessels into arteries and veins. In: Proc. of the 25th Annual International Conf. of the IEEE Engineering in Medicine and Biology Society, vol. 891, pp. 890–893 (2003)Google Scholar
  10. 10.
    Kanski, J.J.: Clinical Ophthalmology, 6th edn. Elsevier Health Sciences, London (2007)Google Scholar
  11. 11.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images A survey. Computer Methods and Programs in Biomedicine 108, 407–433 (2012)CrossRefGoogle Scholar
  12. 12.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  13. 13.
    Yang, X.-S.: Flower pollination algorithm for global optimization. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 240–249. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Pavlyukevich, I.: Levy flights, non-local search and simulated annealing. J. Computational Physics 226, 1830–1844 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (2009) (retrieved April 07, 2009); MR 0214227. Zbl 0214.46201Google Scholar
  16. 16.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A Possibilistic Fuzzy c-Means Clustering Algorithm. IEEE Trans. on Fuzzy systems 13(4), 517–530 (2005)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • E. Emary
    • 1
    • 4
  • Hossam M. Zawbaa
    • 2
    • 3
    • 4
  • Aboul Ella Hassanien
    • 1
    • 4
  • Mohamed F. Tolba
    • 5
  • Václav Snášel
    • 6
  1. 1.Faculty of Computers and InformationCairo UniversityCairoEgypt
  2. 2.Faculty of Mathematics and Computer ScienceBabes-Bolyai UniversityCluj-NapocaRomania
  3. 3.Faculty of Computers and InformationBeniSuef UniversityBeniSuefEgypt
  4. 4.Scientific Research Group in Egypt (SRGE)CairoEgypt
  5. 5.Faculty of Computers and InformationAin Shams UniversityCairoEgypt
  6. 6.Electrical Engineering & Computer ScienceVSB-TUOstravaCzech Republic

Personalised recommendations