Multi-Agent System for Remote Healthcare Monitoring

  • Mohamed Achraf Dhouib
  • Lamine Bougueroua
  • Katarzyna Węgrzyn-Wolska
  • Salim Benayoune
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 303)


This research is in the field of remote healthcare monitoring systems which propose software solutions to monitor elderly people in their own homes. Our objective is to take advantage of the technological diversity of several Decision Support Systems used to detect distress situations. We propose a multi-agent architecture; each agent encapsulates a decision support system. This encapsulation enables the fusion of heterogonous decisions. In this paper, we present the architecture of our multi-agent system (MAS) and the computation methods to perform the decision fusion.


multi-agent system decision support system decision fusion remote healthcare monitoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Conseil d’orientation des retraites: Retraites: perspectives 2020, 2040 et 2060 (March 2013)Google Scholar
  2. 2.
    Rammal, A., Trouilhet, S., Singer, N., Pécatte, J.M.: An adaptative System for Home monitoring Using a Multiagent Classification of Patterns. International Journal of Telemedcine and Application 2008 (March 2008)Google Scholar
  3. 3.
    Belle, A., Kon, M.A., Najarian, K.: Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey. Scientific World Journal, 769639 (2013)Google Scholar
  4. 4.
    Marschollek, M.: Decision support at home (DS@HOME) – system architectures and requirements. BMC Medical Informatics and Decision Making 12, 43 (2012)CrossRefGoogle Scholar
  5. 5.
    Zato, C., De Paz, J.F., de la Prieta, F., Lopez, V., Bajo, J., Corchado, J.M.: Intelligent context-based information fusion system in health care: Helping people live healthier. In: 2010 13th Conference on Information Fusion (FUSION), July 26-29, pp. 1–7 (2010)Google Scholar
  6. 6.
    Artikis, A., Bamidis, P.D., et al.: Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study. In: The ECAI Workshop NetMed 2012, Montpellier (August 27, 2012)Google Scholar
  7. 7.
    Sycara, K., Glinton, R., Yu, B., Giampapa, J., Owens, S., Lewis, M., Grindle, L.C.: An integrated approach to high-level information fusion. Information Fusion 10(1), 25–50 (2009)CrossRefGoogle Scholar
  8. 8.
    Phillips-Wren, G.E., McKniff, S.: Fusing Decision Support into the Fabric of Healthcare to Prevent Medication Errors. In: Respício, A., Burstein, F. (eds.) DSS, pp. 27–36. IOS Press (2012)Google Scholar
  9. 9.
    Fraile, J.A., Bajo, J., Corchado, J.M.: Multi-Agent Architecture for Dependent Environments. Providing Solutions for Home Care. Inteligencia Artificial. RevistaIberoamericana de Inteligencia Artificial, 36–45 (2009)Google Scholar
  10. 10.
    Corchado, J.M., Bajo, J., Tapia, D.I., Abraham, A.: Using Heterogeneous Wireless Sensor Networks in a Telemonitoring System for Healthcare. IEEE Transactions on Information Technology in Biomedicine 14(2), 234–240 (2010)CrossRefGoogle Scholar
  11. 11.
    Castanedo, F., García, J., et al.: Data fusion to improve trajectory tracking in a Cooperative Surveillance Multi-Agent Architecture. In: Applied Artificial Intelligence Group (GIAA). Universidad Carlos III 22, 28270, Colmenarejo (2010)Google Scholar
  12. 12.
    Liu, Y.-H., Wang, S.-Z., Du., X.-M.: A multi-agent information fusion model for ship collision avoidance. In: International Conference on Machine Learning and Cybernetics, vol. 1, pp. 6–11 (2008)Google Scholar
  13. 13.
    Sycara, K., Glinton, R., Yu, B., Giampapa, J., et al.: An integrated approach to high-level information fusion. Information Fusion 10(1), 25–50 (2009)CrossRefGoogle Scholar
  14. 14.
    Palazzo, L., Rossi, M., Dragoni, A.F., et al.: A Multi-Agent Architecture for Health Information Systems. In: International Workshop on Artificial Intelligence and NetMedicine (August. 2013)Google Scholar
  15. 15.
    Tapia, D.I., Sara, R., Javier, B., Corchado, J.M.: FUSION@, A SOA-Based Multi-agent Architecture. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds.) DCAI 2008. ASC, vol. 50, pp. 99–107. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Dhouib, M.A., Bougueroua, L., Węgrzyn-Wolska, K.: Combination of decision support system (DSS) for remote healthcare monitoring using a multi-agent approach. In: Chaki, N., Cortesi, A. (eds.) CISIM 2011. Communications in Computer and Information Science, vol. 245, pp. 74–84. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Fan, B., Pu, J.: Multi-Agent Decision Fusion and Its Application in Adversarial Multi-robot System. In: International Workshop on Education Technology and Training, 2008 International Workshop on Geoscience and Remote Sensing, ETT and GRS 2008, December 21-22, vol. 1, pp. 672–675 (2008)Google Scholar
  18. 18.
    Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38(2), 133–147 (2004), doi:10.1016/j.ijar.2004.05.003, ISSN 0888-613XGoogle Scholar
  19. 19.
    Rao, A.A., Georgeff, M.P.: An abstract architecture for rational agents. In: Nebel, N., Rich, C., Swartout, W. (eds.) KR 1992, pp. 439–449. Morgan Kaufmann, San Francisco (1992)Google Scholar
  20. 20.
    Rao, A.A., Georgeff, M.P.: A model-theoretical approach to the verification of situated reasoning systems. In: Bajcsy, R. (ed.) IJICAI 1993, pp. 318–324. Morgan Kaufmann, San Francisco (1993)Google Scholar
  21. 21.
    Wooldridge, M., Jennungs, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)CrossRefGoogle Scholar
  22. 22.
    Niu, G., Han, T., Yang, B.-S., Tan, A.C.C.: Multi-agent decision fusion for motor fault diagnosis. Mechanical Systems and Signal Processing 21(3), 1285–1299 (2006), doi:10.1016/j.ymssp.2006.03.003, ISSN 0888-3270Google Scholar
  23. 23.
    Wooldridge, M., Jennungs, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mohamed Achraf Dhouib
    • 1
  • Lamine Bougueroua
    • 1
  • Katarzyna Węgrzyn-Wolska
    • 1
  • Salim Benayoune
    • 1
  1. 1.Esigetel, AllianSTICVillejuifFrance

Personalised recommendations