Advertisement

Scaled Tree Fractals Do not Strictly Self-assemble

  • Kimberly BarthEmail author
  • David Furcy
  • Scott M. Summers
  • Paul Totzke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8553)

Abstract

In this paper, we show that any scaled-up version of any discrete self-similar tree fractal does not strictly self-assemble, at any temperature, in Winfree’s abstract Tile Assembly Model.

Keywords

Assembly Sequence Tree Fractal Tile Type Grid Graph Southwest Corner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kautz, S.M., Lathrop, J.I.: Self-assembly of the discrete Sierpinski carpet and related fractals. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 78–87. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Kautz, S.M., Shutters, B.: Self-assembling rulers for approximating generalized sierpinski carpets. Algorithmica 67(2), 207–233 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theoretical Computer Science 410, 384–405 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Lutz, J.H., Shutters, B.: Approximate self-assembly of the sierpinski triangle. Theory Comput. Syst. 51(3), 372–400 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods, D.: Intrinsic universality in tile self-assembly requires cooperation. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 752–771 (2014)Google Scholar
  6. 6.
    Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals. Natural Computing 1, 135–172 (2010)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph.D. thesis, University of Southern California (December 2001)Google Scholar
  8. 8.
    Seeman, N.C.: Nucleic-acid junctions and lattices. Journal of Theoretical Biology 99, 237–247 (1982)CrossRefGoogle Scholar
  9. 9.
    Seeman, N.C.: De novo design of sequences for nucleic acid structural engineering. Journal of Biomolecular Structural Dynamics 8, 573–581 (1990)CrossRefGoogle Scholar
  10. 10.
    Wang, H.: Proving theorems by pattern recognition – II. The Bell System Technical Journal XL(1), 1–41 (1961)Google Scholar
  11. 11.
    Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology (June 1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Kimberly Barth
    • 1
    Email author
  • David Furcy
    • 1
  • Scott M. Summers
    • 1
  • Paul Totzke
    • 1
  1. 1.Department of Computer ScienceUniversity of Wisconsin–OshkoshOshkoshUSA

Personalised recommendations