Advertisement

Compact Realization of Reversible Turing Machines by 2-State Reversible Logic Elements

  • Kenichi MoritaEmail author
  • Rei Suyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8553)

Abstract

A reversible logic element with memory (RLEM) is a primitive by which reversible computing systems can be constructed. Different from a reversible logic gate, it has a finite memory, and thus is defined as a kind of reversible sequential machine (RSM). It is known that any reversible Turing machine (RTM) can be built in a simple way using a rotary element (RE), a typical 2-state RLEM (i.e., having 1-bit memory) with four input/output lines. In this paper, we show another compact realization of an RTM using a 2-state RLEM No. 4-31 with four input/output lines. Since RLEM 4-31 can be simulated by a circuit composed of only two copies of 2-state RLEM 3-7, we also obtain another compact realization by an RLEM with three input/output lines.

Keywords

Output Port Input Port Reversible Logic Input Symbol Output Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)CrossRefzbMATHGoogle Scholar
  2. 2.
    Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Lee, J., Peper, F., Adachi, S., Morita, K.: An asynchronous cellular automaton implementing 2-state 2-input 2-output reversed-twin reversible elements. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 67–76. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Morita, K.: A simple universal logic element and cellular automata for reversible computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Morita, K.: A new universal logic element for reversible computing. In: Martin-Vide, C., Mitrana, V. (eds.) Grammars and Automata for String Processing, pp. 285–294. Taylor & Francis, London (2003)CrossRefGoogle Scholar
  6. 6.
    Morita, K.: Reversible computing and cellular automata — A survey. Theoret. Comput. Sci. 395, 101–131 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Morita, K.: Constructing a reversible Turing machine by a rotary element, a reversible logic element with memory. Hiroshima University Institutional Repository (2010), http://ir.lib.hiroshima-u.ac.jp/00029224
  8. 8.
    Morita, K.: Reversible Computing. Kindai Kagaku-sha Co., Ltd., Tokyo (2012) (in Japanese) ISBN 978-4-7649-0422-4Google Scholar
  9. 9.
    Morita, K., Ogiro, T., Alhazov, A., Tanizawa, T.: Non-degenerate 2-state reversible logic elements with three or more symbols are all universal. J. Multiple-Valued Logic and Soft Computing 18, 37–54 (2012)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Morita, K., Ogiro, T., Tanaka, K., Kato, H.: Classification and universality of reversible logic elements with one-bit memory. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 245–256. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Mukai, Y., Morita, K.: Realizing reversible logic elements with memory in the billiard ball model. Int. J. of Unconventional Computing 8(1), 47–59 (2012)Google Scholar
  12. 12.
    Mukai, Y., Ogiro, T., Morita, K.: Universality problems on reversible logic elements with 1-bit memory. Int. J. Unconventional Computing (to appear)Google Scholar
  13. 13.
    Toffoli, T.: Reversible computing. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  14. 14.
    Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theory 14, 12–23 (1981)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Hiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations