Pattern Formation by Spatially Organized Approximate Majority Reactions

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8553)


Pattern formation is a topic of great interest in biology and nanotechnology. In this paper we investigate a system of spatially-organized reactions inspired by a well-known distributed algorithm for approximate majority voting, and demonstrate that this system can lead to pattern formation from a randomly initialized starting state. We also show that the approximate majority reaction scheme can preserve an existing pattern in the face of noise, and that exerting control over reaction rates can influence the generated pattern. This work has potential applications in the rational design of pattern-forming systems in DNA nanotechnology and synthetic biology.


Pattern Formation Synthetic Biology Stochastic Simulation Spiral Wave Noise Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turing, A.M.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B 237(641), 37–72 (1952)CrossRefGoogle Scholar
  2. 2.
    Chirieleison, S.M., Allen, P.B., Simpson, Z.B., Ellington, A.D., Chen, X.: Pattern transformation with DNA circuits. Nature Chemistry 5, 1000–1005 (2013)CrossRefGoogle Scholar
  3. 3.
    Padirac, A., Fujii, T., Estévez-Torres, A., Rondelez, Y.: Spatial waves in synthetic biochemical networks. Journal of the American Chemical Society 135(39), 14586–14592 (2013)CrossRefGoogle Scholar
  4. 4.
    Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distributed Computing 21(2), 87–102 (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Lakin, M.R., Parker, D., Cardelli, L., Kwiatkowska, M., Phillips, A.: Design and analysis of DNA strand displacement devices using probabilistic model checking. Journal of the Royal Society Interface 9(72), 1470–1485 (2012)CrossRefGoogle Scholar
  6. 6.
    Lakin, M.R., Phillips, A., Stefanovic, D.: Modular verification of DNA strand displacement networks via serializability analysis. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 133–146. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nature Nanotechnology 8, 755–762 (2013)CrossRefGoogle Scholar
  8. 8.
    Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Scientific Reports 2, 656 (2012)CrossRefGoogle Scholar
  9. 9.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  10. 10.
    Doursat, R., Sayama, H., Michel, O.: A review of morphogenetic engineering. Natural Computing 12(4), 517–535 (2013)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Li, H., Carter, J.D., LaBean, T.H.: Nanofabrication by DNA self-assembly. Materials Today 12(5), 24–32 (2009)CrossRefGoogle Scholar
  12. 12.
    Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Reviews of Modern Physics 65(3), 851–1112 (1993)CrossRefGoogle Scholar
  13. 13.
    Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31(1), 253–258 (1925)CrossRefGoogle Scholar
  14. 14.
    Antal, T., Droz, M., Magnin, J., Pekalski, A., Rácz, Z.: Formation of Liesegang patterns: Simulations using a kinetic Ising model. Journal of Chemical Physics 114(8), 3770–3775 (2001)CrossRefGoogle Scholar
  15. 15.
    Murray, J.D.: A pre-pattern formation mechanism for animal coat markings. Journal of Theoretical Biology 88, 161–199 (1981)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Castets, V., Dulos, E., Boissonade, J., De Kepper, P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Physical Review Letters 64, 2953–2956 (1990)CrossRefGoogle Scholar
  17. 17.
    Lotka, A.J.: Undamped oscillations derived from the law of mass action. Journal of the American Chemical Society 42, 1595–1599 (1920)CrossRefGoogle Scholar
  18. 18.
    Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926)CrossRefMATHGoogle Scholar
  19. 19.
    Degn, H.: Oscillating chemical reactions in homogeneous phase. Journal of Chemical Education 49, 302–307 (1972)CrossRefGoogle Scholar
  20. 20.
    Winfree, A.T.: Spiral waves of chemical activity. Science 175, 634–635 (1972)CrossRefGoogle Scholar
  21. 21.
    Field, R.J., Noyes, R.M.: Explanation of spatial band propagation in the Belousov reaction. Nature (London) 237, 390–392 (1972)CrossRefGoogle Scholar
  22. 22.
    Winfree, A.T.: Varieties of spiral wave behaviour: an experimentalist’s approach to the theory of excitable media. Chaos 1, 303–334 (1991)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Zhao, Z., Liu, Y., Yan, H.: Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Letters 11, 2997–3002 (2011)CrossRefGoogle Scholar
  24. 24.
    Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. Journal of the American Chemical Society 129, 14875–14879 (2007)CrossRefGoogle Scholar
  25. 25.
    Yashin, R., Rudchenko, S., Stojanovic, M.: Networking particles over distance using oligonucleotide-based devices. Journal of the American Chemical Society 129, 15581–15584 (2007)CrossRefGoogle Scholar
  26. 26.
    Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry 3(2), 103–113 (2011)CrossRefGoogle Scholar
  27. 27.
    Weitz, M., Mückl, A., Kapsner, K., Berg, R., Meyer, A., Simmel, F.C.: Communication and computation by bacteria compartmentalized within microemulsion droplets. Journal of the American Chemical Society 136(1), 72–75 (2014)CrossRefGoogle Scholar
  28. 28.
    Silva-Rocha, R., de Lorenzo, V.: Engineering multicellular logic in bacteria with metabolic wires. ACS Synthetic Biology 3(4), 204–209 (2014)CrossRefGoogle Scholar
  29. 29.
    Bacchus, W., Lang, M., El-Baba, M.D., Weber, W., Stelling, J., Fussenegger, M.: Synthetic two-way communication between mammalian cells. Nature Biotechnology 30(10), 991–998 (2012)CrossRefGoogle Scholar
  30. 30.
    Danino, T., Mondragón-Palomino, O., Tsimring, L., Hasty, J.: A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010)CrossRefGoogle Scholar
  31. 31.
    Rudge, T.J., Steiner, P.J., Phillips, A., Haseloff, J.: Computational modeling of synthetic microbial biofilms. ACS Synthetic Biology 1, 345–352 (2012)CrossRefGoogle Scholar
  32. 32.
    Dalchau, N., Smith, M.J., Martin, S., Brown, J.R., Emmott, S., Phillips, A.: Towards the rational design of synthetic cells with prescribed population dynamics. Journal of the Royal Society Interface 9(76), 2883–2898 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA
  2. 2.Center for Biomedical EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations