Advertisement

Fast Arithmetic in Algorithmic Self-assembly

  • Alexandra Keenan
  • Robert Schweller
  • Michael Sherman
  • Xingsi Zhong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8553)

Abstract

In this paper we consider the time complexity of adding two n-bit numbers together within the tile self-assembly model. The (abstract) tile assembly model is a mathematical model of self-assembly in which system components are square tiles with different glue types assigned to tile edges. Assembly is driven by the attachment of singleton tiles to a growing seed assembly when the net force of glue attraction for a tile exceeds some fixed threshold. Within this frame work, we examine the time complexity of computing the sum of 2 n-bit numbers, where the input numbers are encoded in an initial seed assembly, and the output sum is encoded in the final, terminal assembly of the system. We show that this problem, along with multiplication, has a worst case lower bound of \(\Omega( \sqrt{n} )\) in 2D assembly, and \(\Omega(\sqrt[3]{n})\) in 3D assembly. We further design algorithms for both 2D and 3D that meet this bound with worst case run times of \(O(\sqrt{n})\) and \(O(\sqrt[3]{n})\) respectively, which beats the previous best known upper bound of O(n). Finally, we consider average case complexity of addition over uniformly distributed n-bit strings and show how we can achieve O(logn) average case time with a simultaneous \(O(\sqrt{n})\) worst case run time in 2D. As additional evidence for the speed of our algorithms, we implement our algorithms, along with the simpler O(n) time algorithm, into a probabilistic run-time simulator and compare the timing results.

Keywords

Bond Graph Tile Assembly Model Input Template Tile Assembly System Seed Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abel, Z., Benbernou, N., Damian, M., Demaine, E.D., Demaine, M., Flatland, R., Kominers, S., Schweller, R.: Shape replication through self-assembly and RNase enzymes. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, Society for Industrial and Applied Mathematics (2010)Google Scholar
  2. 2.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 740–748. ACM, New York (2001)CrossRefGoogle Scholar
  3. 3.
    Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D.A., Kempe, D., de Espanés, P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 23–32 (2002)Google Scholar
  4. 4.
    Becker, F., Rapaport, I., Rémila, É.: Self-assembling classes of shapes with a minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)Google Scholar
  5. 5.
    Brun, Y.: Arithmetic computation in the tile assembly model: Addition and multiplication. Theoretical Computer Science 378, 17–31 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bryans, N., Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: The power of nondeterminism in self-assembly. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 590–602. SIAM (2011)Google Scholar
  7. 7.
    Chandran, H., Gopalkrishnan, N., Reif, J.: The tile complexity of linear assemblies. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 235–253. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34, 1493–1515 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Cheng, Q., Goel, A., de Espanés, P.M.: Optimal self-assembly of counters at temperature two. In: Proceedings of the First Conference on Foundations of Nanoscience: Self-assembled Architectures and Devices (2004)Google Scholar
  10. 10.
    Cook, M., Fu, Y., Schweller, R.T.: Temperature 1 self-assembly: Deterministic assembly in 3d and probabilistic assembly in 2d. In: Randall, D. (ed.) Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 570–589. SIAM (2011)Google Scholar
  11. 11.
    Demaine, E.D., Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M., Woods, D.: The two-handed tile assembly model is not intrinsically universal. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 400–412. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Demaine, E.D., Demaine, M.L., Fekete, S.P., Patitz, M.J., Schweller, R.T., Winslow, A., Woods, D.: One tile to rule them all: Simulating any tile assembly system with a single universal tile. In: Proceedings of the 41st International Colloquium on Automata, Languages and Programming, ICALP (2014)Google Scholar
  13. 13.
    Doty, D.: Randomized self-assembly for exact shapes. SIAM Journal on Computing 39(8), 3521–3552 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: Proceedings of the 53rd IEEE Conference on Foundations of Computer Science, FOCS (2012)Google Scholar
  15. 15.
    Doty, D., Patitz, M.J., Reishus, D., Schweller, R.T., Summers, S.M.: Strong fault-tolerance for self-assembly with fuzzy temperature. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 417–426 (2010)Google Scholar
  16. 16.
    Fu, B., Patitz, M.J., Schweller, R.T., Sheline, R.: Self-assembly with geometric tiles. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 714–725. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Keenan, A., Schweller, R.T., Sherman, M., Zhong, X.: Fast arithmetic in algorithmic self-assembly, CoRR abs/1303.2416 (2013)Google Scholar
  19. 19.
    Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)CrossRefGoogle Scholar
  20. 20.
    Schweller, R., Sherman, M.: Fuel efficient computation in passive self-assembly. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pp. 1513–1525. SIAM (2013)Google Scholar
  21. 21.
    Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis. California Institute of Technology (June 1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexandra Keenan
    • 1
  • Robert Schweller
    • 1
  • Michael Sherman
    • 1
  • Xingsi Zhong
    • 1
  1. 1.Department of Computer ScienceUniversity of Texas - Pan AmericanEdinburgUSA

Personalised recommendations