On DNA-Based Gellular Automata

  • Masami Hagiya
  • Shaoyu Wang
  • Ibuki Kawamata
  • Satoshi Murata
  • Teijiro Isokawa
  • Ferdinand Peper
  • Katsunobu Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8553)


We propose the notion of gellular automata and their possible implementations using DNA-based gels. Gellular automata are a kind of cellular automaton in which cells in space are separated by gel materials. Each cell contains a solution with designed chemical reactions whose products dissolve or construct gel walls separating the cells. We first introduce the notion of gellular automata and their computational models. We then give examples of gellular automata and show that computational universality is achieved through the implementation of rotary elements by gellular automata. We finally examine general strategies for implementing gellular automata using DNA-based gels and report results of preliminary experiments.


DNA computing molecular computing molecular robotics cellular automata gel DNA gel soft matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murata, S., Konagaya, A., Kobayashi, S., Saito, H., Hagiya, M.: Molecular Robotics: A New Paradigm for Artifacts. New Generation Computing 31, 27–45 (2013)CrossRefGoogle Scholar
  2. 2.
    Liu, J.: Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter 7, 6757–6767 (2011)CrossRefGoogle Scholar
  3. 3.
    Lin, D.C., Yurke, B., Langrana, N.A.: Mechanical Properties of a Reversible, DNA-Crosslinked Polyacrylamide Hydrogel. J. Biomech. Eng. 126, 104–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Lee, J.B., Peng, S., Yang, D., Roh, Y.H., Funabashi, H., Park, N., Rice, E.J., Chen, L., Long, R., Wu, M., Luo, D.: A mechanical metamaterial made from a DNA hydrogel. Nature Nanotech. 7, 816–820 (2012)CrossRefGoogle Scholar
  5. 5.
    Gao, M., Gawel, K., Stokke, B.T.: Toehold of dsDNA exchange affects the hydrogel swelling kinetics of a polymerdsDNA hybrid hydrogel. Soft Matter 7, 1741 (2011)CrossRefGoogle Scholar
  6. 6.
    Murakami, Y., Maeda, M.: DNA-Responsive Hydrogels That Can Shrink or Swell. Biomacromolecules 6, 2927–2929 (2005)CrossRefGoogle Scholar
  7. 7.
    Villar, G., Graham, A.D., Bayley, H.: A Tissue-Like Printed Material. Science 340, 48–52 (2013)CrossRefGoogle Scholar
  8. 8.
    Langecker, M., Arnaut, V., Martin, T.G., List, J., Renner, S., Mayer, M., Dietz, H., Simmel, F.C.: Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures. Science 338, 932–936 (2012)CrossRefGoogle Scholar
  9. 9.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  10. 10.
    Martn-Vide, C., Pun, G., Pazos, J., Rodrguez-Patn, A.: Tissue P systems. Theoretical Computer Science 296, 295–326 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Alhazov, A.: P systems without multiplicities of symbol-objects. Information Processing Letters 100(3), 124–129 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Giavitto, J.-L., Michel, O., Cohen, J.: Accretive Rules in Cayley P Systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC-CdeA. LNCS, vol. 2597, pp. 319–338. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Morita, K.: A simple universal logic element and cellular automata for reversible computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Beebe, D.J., Moore, J.S., Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.-H.: Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000)CrossRefGoogle Scholar
  15. 15.
    Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA. Science 318, 1121–1125 (2007)CrossRefGoogle Scholar
  16. 16.
    McCaskill, J.S., et al.: Microscale chemically reactive electronic agents. International Journal of Unconventional Computing 8, 289–299 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Masami Hagiya
    • 1
  • Shaoyu Wang
    • 1
  • Ibuki Kawamata
    • 2
  • Satoshi Murata
    • 2
  • Teijiro Isokawa
    • 3
  • Ferdinand Peper
    • 4
  • Katsunobu Imai
    • 5
  1. 1.The University of TokyoTokyoJapan
  2. 2.Tohoku UniversitySendaiJapan
  3. 3.University of HyogoHimejiJapan
  4. 4.National Institute of Information and Communications TechnologyKobeJapan
  5. 5.Hiroshima UniversityHigashihiroshimaJapan

Personalised recommendations