Advertisement

Evaluation of a New Exoskeleton for Upper Limb Post-stroke Neuro-rehabilitation: Preliminary Results

  • Elvira PirondiniEmail author
  • Martina Coscia
  • Simone Marcheschi
  • Gianluca Roas
  • Fabio Salsedo
  • Antonio Frisoli
  • Massimo Bergamasco
  • Silvestro Micera
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 7)

Abstract

Exoskeletons are becoming very popular for the rehabilitative treatment of post-stroke subjects. The aim of this study was to characterize the effect of a new light upper limb exoskeleton on the movement execution and muscular activity during reaching movements in healthy subjects. The results show that the exoskeleton used in the passive modality supports the upper limb reducing the muscular activity of the shoulder’s muscles and increasing the activity of the elbow flexors, without interfering with the movement execution. Our preliminary analysis on healthy subjects supports the use of this new exoskeleton for post-stroke robotic-rehabilitation.

Keywords

Root Mean Square Maximum Voluntary Contraction Elbow Flexor Passive Modality Movement Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    WHO, World Health Statistics, World Health Organization (2008)Google Scholar
  2. 2.
    Clauser, C.E., McConville, J.T., Young, J.W.: Weight, volume, and center of mass of segments of the human body. DTIC Document (1969)Google Scholar
  3. 3.
    Hug, F.: Can muscle coordination be precisely studied by surface electromyography? J. Electromyogr. Kinesiol. 21(1), 1–12 (2011)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bourbonnais, D., et al.: Abnormal spatial patterns of elbow muscle activation in hemiparetic human subjects. Brain 112(Pt. 1), 85–102 (1989)CrossRefGoogle Scholar
  5. 5.
    Ryerson, K.L.: Functional movement reduction: a complementary model for stroke rehabilitation. Churchill Livingstone, New York (1997)Google Scholar
  6. 6.
    Brunnström, S.: Movement therapy in hemiplegia: a neurophysiological approach. Facts and Comparisons (1970)Google Scholar
  7. 7.
    Bobath, B.: Adult hemiplegia: evaluation and treatment, vol. 3. Heinemann Medical Books Oxford (1990)Google Scholar
  8. 8.
    Levin, M.F.: Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 119(1), 281–293 (1996)CrossRefGoogle Scholar
  9. 9.
    Woldag, H., Hummelsheim, H.: Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients. J. Neurology 249(5), 518–528 (2002)CrossRefGoogle Scholar
  10. 10.
    Milot, M.-H., et al.: A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J. Neuroeng. Rehabil. 10(1), 112 (2013)CrossRefGoogle Scholar
  11. 11.
    Bergamasco, M.: An Exoskeleton Structure for Physical Interaction with a Human Being. PCT Application N. WO2013186701 (A1) (2013)Google Scholar
  12. 12.
    Hermens, H.J., et al.: Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10(5), 361–374 (2000)CrossRefGoogle Scholar
  13. 13.
    Panarese, A., et al.: Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients. Neurorehabil. Neural Repair 26(7), 822–833 (2012)CrossRefGoogle Scholar
  14. 14.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Adv. Neural Information Proc. Systems 13, 556–562 (2001)Google Scholar
  15. 15.
    Cheung, V.C., et al.: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. U. S. A. 106(46), 19563–19568 (1956)Google Scholar
  16. 16.
    Sabatini, A.M.: Identification of neuromuscular synergies in natural upper-arm movements. Biol. Cybern. 86(4), 253–262 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Elvira Pirondini
    • 1
    Email author
  • Martina Coscia
    • 1
    • 2
  • Simone Marcheschi
    • 3
  • Gianluca Roas
    • 3
  • Fabio Salsedo
    • 3
  • Antonio Frisoli
    • 3
  • Massimo Bergamasco
    • 3
  • Silvestro Micera
    • 1
    • 4
  1. 1.Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, School of EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Neuroscience Institute, Consiglio Nazionale delle Ricerche (CNR)PisaItaly
  3. 3.PERCROScuola Superiore Sant’AnnaPisaItaly
  4. 4.Biorobotics InstituteScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations