Biocidal Mechanisms of Metallic Copper Surfaces

  • Christophe Espírito Santo
  • Nadezhda German
  • Jutta Elguindi
  • Gregor Grass
  • Christopher RensingEmail author


Hospital acquired infections (HAI), also known as nosocomial infections, have a vast impact on patient and staff health and affect survival chances of patients with compromised immune system, elderly, and young children. Moreover, hospital environments are favoring the development of drug-resistant strains of bacteria, making treatment of such HAI more challenging. The Center of Disease Control estimates that one of the deadliest types of antibiotic-resistant bacteria, MRSA (methicillin-resistant Staphylococcus aureus), causes 19,000 death cases per year, whereas another superbug, Clostridium difficile, causes 500,000 incidents per year.

The natural medicinal and sanitizing properties of copper and its minerals were used throughout the ages by many civilizations. However, only recently have we started understanding the mechanisms of such bactericidal effects of copper. One of the latest research developments in this area is concerned with showing that metallic copper surfaces strongly reduce microbial surface-burden, both in laboratory settings and healthcare environments. Microbiologists and hygiene specialists are increasingly recognizing this unique antimicrobial property of metallic copper as a very promising novel tool for reducing HAI, which are known to spread through touching contaminated surfaces. Copper surfaces have universal microbe-inactivating properties against a wide variety of Gram-positive and Gram-negative microbes under moist (droplets of cell suspensions, mimicking splash-contamination) or dry (direct contact between cells and surfaces, mimicking touch surfaces) conditions.

This chapter reviews the molecular mechanisms underlying bactericidal properties of solid copper surfaces and factors that influence such processes: copper surface oxidation and corrosion, copper cell accumulation, copper alloy content and roughness, temperature, moisture, presence of chelators, osmotic stress, reactive oxygen species, cellular characteristics, cell wall structure, spores, genetic traits for copper resistance systems, anaerobiosis, viable but not culturable state (VBNC). Additionally, primary targets for metallic copper toxicity, DNA and lipids, are also included in discussion in this chapter.

Our understanding of the antimicrobial properties of metallic copper surfaces have made great strides in the last 5 years both under laboratories and healthcare conditions, highlighting safe, economical and sustainable application of metallic copper surfaces in hospital or any public settings for prevention of HAI.


Metallic copper surface Antimicrobial Biocidal Toxicity Killing mechanism Membrane damage Genotoxicity 

List of Abbreviations


Bathocuproine disulfonate




Allylic radicals


Colony forming units


Copper-induced outer membrane component


Copper-induced repressor


Copper exporter P-type ATPase


Cytoplasmic copper and delivers it to the P1B-type ATPase


Copper-responsive repressor


Cytoplasmic copper binding chaperone


Periplasmic copper binding protein


Copper response cytoplasmic MerR-family activator/repressor


Copper/Silver transporting efflux system


Periplasmic copper two-component system sensor


d-cycloserine uptake permease


Deoxyribonucleic acid


Ethylenediaminetetraacetic acid


Repressor for unsaturated fatty acids biosynthesis


Fatty acid methyl esters




Glutathione disulfide


Healthcare-acquired infections


Inductively coupled plasma mass spectrometry




Lipid radical


Lipid alkoyl radicals


Peroxyl radical




Mercury resistance repressor


Plasmid-borne copper resistance


Proton motive force


Reactive oxygen species


Thiobarbituric acid-reactive substances


Tetracycline repressor protein






  1. 1.
    Albright LJ, Wilson EM (1974) Sub-lethal effects of several metallic salts—organic compounds combinations upon the heterotrophic microflora of a natural water. Water Res 8(2):101–105. doi: 10.1016/0043-1354(74)90133-X CrossRefGoogle Scholar
  2. 2.
    Argüello JM, González-Guerrero M, Raimunda D (2011) Bacterial transition metal P(1B)-ATPases: transport mechanism and roles in virulence. Biochemistry 50:9940–9949PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Aurass P, Prager R, Flieger A (2011) EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemolytic uremic syndrome enters into the viable but non-culturable state in response to various stresses and resuscitates upon stress relief. Environ Microbiol 13:3139–3148PubMedCrossRefGoogle Scholar
  4. 4.
    Bittner O, Gal S, Pinchuk I, Danino D, Shinar H, Lichtenberg D (2002) Copper-induced peroxidation of liposomal palmitoyllinoleoylphosphatidylcholine (PLPC), effect of antioxidants and its dependence on the oxidative stress. Chem Phys Lipids 114:81–98PubMedCrossRefGoogle Scholar
  5. 5.
    Brown NL, Barrett SR, Camakaris J, Lee BTO, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17:1153–1166Google Scholar
  6. 6.
    Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Shillam R, Christian P, Elliott TSJ (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74:72–77, Elsevier LtdPubMedCrossRefGoogle Scholar
  7. 7.
    Cervantes-Cervantes MP, Calderón-Salinas JV, Albores A, Muñoz-Sánchez JL (2005) Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biol Trace Elem Res 103:229–248PubMedCrossRefGoogle Scholar
  8. 8.
    Chalk AJ, Smith JF (1957) Catalysis of cyclohexene autoxidation by trace metals in non-polar media. Part 2. Metal salts in the presence of chelating agents. Trans Faraday Soc 53:1235CrossRefGoogle Scholar
  9. 9.
    Chalk AJ, Smith JF (1957) Catalysis of cyclohexene autoxidation by trace metals in non-polar media. Part 1.-Metal salts. Trans Faraday Soc 53:1214CrossRefGoogle Scholar
  10. 10.
    Changela A, Chen K, Xue Y, Holschen J, Outten CE, O’Halloran TV, Mondragón A (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387PubMedCrossRefGoogle Scholar
  11. 11.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214PubMedCrossRefGoogle Scholar
  12. 12.
    Copping C, Uri N (1968) Catalytic and inhibitory effects of metal chelates in autoxidation reaction. Discuss Faraday Soc 46:202, The Royal Society of ChemistryCrossRefGoogle Scholar
  13. 13.
    Cosgrove JP, Church DF, Pryor WA (1987) The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22:299–304PubMedCrossRefGoogle Scholar
  14. 14.
    Cox MM, Keck JL, Battista JR (2010) Rising from the Ashes: DNA Repair in Deinococcus radiodurans. PLoS Genet 6:e1000815Google Scholar
  15. 15.
    Crichton RR, Pierre JL (2001) Old iron, young copper: from Mars to Venus. Biometals 14:99–112PubMedCrossRefGoogle Scholar
  16. 16.
    Dancer SJ (2008) Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis 8:101–113Google Scholar
  17. 17.
    Dick RJ, Johnston HN, Wray JA (1973) A literature and technology search on the bacteriostatic and sanitizing properties of copper and copper alloy surfaces. INCRA REP, ColumbusGoogle Scholar
  18. 18.
    Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115 (Aruoma OIH (Ed)). OICA International Saint LuciaGoogle Scholar
  19. 19.
    Dollwet HHA, Sorenson JRJ (1985) Historic uses of copper compounds in medicine. Trace Elem Med 2:80–87Google Scholar
  20. 20.
    Drucker H, Garland T, Wildung R (1979) Metabolic response of microbiota to chromium and other metals. In: Kharasch N (ed) Trace elements in health and disease. Raven, Raven, New York, pp 1–25Google Scholar
  21. 21.
    Dupont CL, Grass G, Rensing C (2011) Copper toxicity and the origin of bacterial resistance–new insights and applications. Metallomics 3:1109–1118PubMedCrossRefGoogle Scholar
  22. 22.
    Elguindi J, Wagner J, Rensing C (2009) Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol 106:1448–1455PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Elguindi J, Moffitt S, Hasman H, Andrade C, Raghavan S, Rensing C (2011) Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria. Appl Microbiol Biotechnol 89:1963–1970PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Elguindi J, Alwathnani HA, Rensing C (2012) Rapid inactivation of Cronobacter sakazakii on copper alloys following periods of desiccation stress. World J Microbiol Biotechnol 28:1837–1841Google Scholar
  25. 25.
    Espírito Santo C, Taudte N, Nies DH, Grass G (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces. Appl Environ Microbiol 74:977–986PubMedCrossRefGoogle Scholar
  26. 26.
    Espírito Santo C, Morais PV, Grass G (2010) Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol 76:1341–1348PubMedCentralCrossRefGoogle Scholar
  27. 27.
    Espírito Santo C, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77:794–802, American Society for Microbiology (ASM)PubMedCrossRefGoogle Scholar
  28. 28.
    Espírito Santo C, Quaranta D, Grass G (2012) Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen 1:46–52CrossRefGoogle Scholar
  29. 29.
    Faúndez G, Troncoso M, Navarrete P, Figueroa G (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol 4:19, BioMed CentralPubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Frankel EN (1980) Lipid oxidation. Prog Lipid Res 19:1–22 (Frankel EN (ed)). Pergamon Press, BridgwaterGoogle Scholar
  32. 32.
    Fraústo Da Silva J, Williams R (2001) The biological chemistry of the elements: the inorganic chemistry of life, 2nd edn, Proteins. Oxford University Press, OxfordGoogle Scholar
  33. 33.
    Gould SWJ, Fielder MD, Kelly AF, Morgan M, Kenny J, Naughton DP (2009) The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann Microbiol 59:151–156, SpringerCrossRefGoogle Scholar
  34. 34.
    Grass G, Rensing C (2001) CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 286:902–908Google Scholar
  35. 35.
    Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547, American Society for Microbiology (ASM)PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Grey BE, Steck TR (2001) The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl Environ Microbiol 67:3866–3872Google Scholar
  37. 37.
    Gutierrez H, Portman T, Pershin V, Ringuette M (2013) Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers. J Appl Microbiol 114:680–687PubMedCrossRefGoogle Scholar
  38. 38.
    Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14PubMedCentralPubMedGoogle Scholar
  39. 39.
    Hong R, Kang TY, Michels CA, Gadura N (2012) Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol 78:1776–1784PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Huheey J, Keiter E, Keiter R, Medhi O (1993) Chapter 2 – The structure of the atom. In: Piro J (ed) Inorganic chemistry: principles of structure and reactivity, 4th edn. HarperCollins College Publishers, New YorkGoogle Scholar
  41. 41.
    Hyde SM, Verdin D (1968) Oxidation of methyl oleate induced by 60Co γ-radiation. Part 1. – Pure methyl oleate. Trans Faraday Soc 64:144CrossRefGoogle Scholar
  42. 42.
    Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309PubMedCrossRefGoogle Scholar
  43. 43.
    Karlin KD (1993) Metalloenzymes, structural motifs, and inorganic models. Science 261:701–708PubMedCrossRefGoogle Scholar
  44. 44.
    Karpanen TJ, Casey AL, Lambert PA, Cookson BD, Nightingale P, Miruszenko L, Elliott TSJ (2012) The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study. Infect Control Hosp Epidemiol 33:3–9PubMedCrossRefGoogle Scholar
  45. 45.
    Kim JH, Cho H, Ryu SE, Choi MU (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80Google Scholar
  46. 46.
    Kochi JK (1962) The mechanism of the copper salt catalysed reactions of peroxides. Tetrahedron 18:483–497CrossRefGoogle Scholar
  47. 47.
    Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Kuhn PJ (1983) Doorknobs: a source of nosocomial infection? Diagn Med 6(8):62–63Google Scholar
  49. 49.
    Liochev SI, Fridovich I (2002) The Haber-Weiss cycle – 70 years later: an alternative view. Redox Rep 7:55–57, author reply 59–60PubMedCrossRefGoogle Scholar
  50. 50.
    Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Macomber L, Rensing C, Imlay JA (2007) Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189:1616–1626PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Marais F, Mehtar S, Chalkley L (2010) Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. J Hosp Infect 74:80–82PubMedCrossRefGoogle Scholar
  53. 53.
    Mathews S, Hans M, Mücklich F, Solioz M (2013) Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions. Appl Environ Microbiol 79:2605–2611PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Mehtar S, Wiid I, Todorov SD (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect 68:45–51PubMedCrossRefGoogle Scholar
  55. 55.
    Mermod M, Magnani D, Solioz M, Stoyanov JV (2012) The copper-inducible ComR (YcfQ) repressor regulates expression of ComC (YcfR), which affects copper permeability of the outer membrane of Escherichia coli. Biometals 25:33–43PubMedCrossRefGoogle Scholar
  56. 56.
    Metzler D (2003) Chapter 16 – Transition metals in catalysis and electron transport. In: Hayhurst J (ed) Biochemistry: the chemical reactions of living cells (Volume 1 and 2), 2nd edn. Academic, San DiegoGoogle Scholar
  57. 57.
    Michels HT, Noyce JO, Keevil CW (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett Appl Microbiol 49:191–195, Blackwell Publishing LtdPubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Michels HT, Wilks SA, Keevil CW (2003) The antimicrobial effects of copper alloy surfaces on the bacterium, E. coli 0157:H7. In: Lagos GE, Sahoo M, Camus J (eds) Proceedings of Copper 2003 – Cobre 2003, the 5th international conference, Santiago, pp 439–450Google Scholar
  59. 59.
    Michels HT, Wilks SA, Keevil CW (2004) Effects of copper alloy surfaces on the viability of bacterium, E. coli O157:H7. In: Hygenic coatings & surfaces. The Paint Research Association, TeddingtonGoogle Scholar
  60. 60.
    Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH (2010) Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol 87:1875–1879, Springer, Berlin/ HeidelbergPubMedCrossRefGoogle Scholar
  61. 61.
    Molteni C, Abicht HK, Solioz M (2010) Transition Metals in Catalysis and Electron Transport. Killing of bacteria by copper surfaces involves dissolved copper. Appl Environ Microbiol 76:4099–4101, American Society for Microbiology (ASM)Google Scholar
  62. 62.
    Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Nandakumar R, Espírito Santo C, Madayiputhiya N, Grass G (2011) Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces. Biometals 24:429–444PubMedCrossRefGoogle Scholar
  64. 64.
    Nilsson L, Oliver JD, Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol 173:5054–5059Google Scholar
  65. 65.
    Noyce JO, Michels H, Keevil CW (2006) Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Appl Environ Microbiol 72:4239–4244, American Society for MicrobiologyPubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Noyce JO, Michels H, Keevil CW (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect 63:289–297, The Hospital Infection SocietyPubMedCrossRefGoogle Scholar
  67. 67.
    Noyce JO, Michels H, Keevil CW (2007) Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl Environ Microbiol 73:2748–2750, American Society for MicrobiologyPubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Ochiai E-I (1986) Iron versus copper, II: principles and applications in bioinorganic chemistry. J Chem Educ 63:942CrossRefGoogle Scholar
  69. 69.
    Odermatt A, Suter H, Krapf R, Solioz M (1992) An ATPase operon involved in copper resistance by Enterococcus hirae. Ann N Y Acad Sci 671:484–486PubMedCrossRefGoogle Scholar
  70. 70.
    Osman D, Waldron KJ, Denton H, Taylor CM, Grant AJ, Mastroeni P, Robinson NJ, Cavet JS (2010) Copper homeostasis in Salmonella is atypical and copper-CueP is a major periplasmic metal complex. J Biol Chem 285:25259–25268PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Outten FW, Huffman DL, Hale JA, O’Halloran TV (2001) The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276:30670–30677PubMedCrossRefGoogle Scholar
  72. 72.
    Quaranta D, Krans T, Espírito Santo C, Elowsky CG, Domaille DW, Chang CJ, Grass G (2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl Environ Microbiol 77:416–426PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Raimunda D, González-Guerrero M, Leeber BW, Argüello JM (2011) The transport mechanism of bacterial Cu+ −ATPases: distinct efflux rates adapted to different function. Biometals 24:467–475Google Scholar
  74. 74.
    Reardon AC (2011) Discovering metals : a historical overview. In: Reardon AC (ed) Metallurgy for the non-metallurgist, 2nd edn. ASM International, Materials ParkGoogle Scholar
  75. 75.
    Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A 97:652–656Google Scholar
  76. 76.
    Repetto M, Semprine J, Boveris A (2012) Chemical mechanism, biological implications and analytical determination. In: Catala A (ed) Lipid peroxidation. InTech, Rijeka, pp 3–30. doi: 10.5772/45943
  77. 77.
    Salgado CD, Sepkowitz KA, John JF, Cantey JR, Attaway HH, Freeman KD, Sharpe PA, Michels HT, Schmidt MG (2013) Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol 34:479–486PubMedCrossRefGoogle Scholar
  78. 78.
    Schaich KM (2005) Lipid oxidation: theoretical aspects. In: Shahidi F (ed) Bailey’s industrial oil and fat products, vol 6, 6th edn. Wiley, Hoboken, pp 269–355Google Scholar
  79. 79.
    Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 186:7815–7817PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270:9217–9221PubMedCrossRefGoogle Scholar
  81. 81.
    Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195Google Scholar
  82. 82.
    Solioz M, Abicht HK, Mermod M, Mancini S (2010) Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15:3–14Google Scholar
  83. 83.
    Stoyanov JV, Hobman JL, Brown NL (2001) CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39:502–511Google Scholar
  84. 84.
    Sukhi SS, Shashidhar R, Kumar SA, Bandekar JR (2009) Radiation resistance of Deinococcus radiodurans R1 with respect to growth phase. FEMS Microbiol Lett 297:49–53PubMedCrossRefGoogle Scholar
  85. 85.
    Uri N (1961) Physico-chemical aspects of antoxidation. In: Lundberg WO (ed) Autoxid antioxidants, vol I. Interscience, New York City, pp 55–106Google Scholar
  86. 86.
    Warnes SL, Keevil CW (2011) Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact. Appl Environ Microbiol 77:6049–6059PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Warnes SL, Green SM, Michels HT, Keevil CW (2010) Biocidal efficacy of copper alloys against pathogenic enterococci involves degradation of genomic and plasmid DNAs. Appl Environ Microbiol 76:5390–5401, American Society for Microbiology (ASM)PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Weaver L, Michels HT, Keevil CW (2008) Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect 68:145–151PubMedCrossRefGoogle Scholar
  89. 89.
    Weaver L, Michels HT, Keevil CW (2010) Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Lett Appl Microbiol 50:18–23PubMedCrossRefGoogle Scholar
  90. 90.
    Weaver L, Noyce JO, Michels HT, Keevil CW (2010) Potential action of copper surfaces on meticillin-resistant Staphylococcus aureus. J Appl Microbiol 109:2200–2205Google Scholar
  91. 91.
    Weber DJ, Rutala WA (2001) Use of metals as microbicides in preventing infections in healthcare. In: Block SS (ed) Disinfection, sterilization, and preservation, vol 9, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 415–30, Retrieved from,+Sterilisation+and+Preservation&ots=KlDnGx6QF5&sig=UvWes0-YQm6z9tN4mYD3Q6aN0Yo Google Scholar
  92. 92.
    Wheeldon LJ, Worthington T, Lambert PA, Hilton AC, Lowden CJ, Elliott TSJ (2008) Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother 62:522–525, Oxford University PressPubMedCrossRefGoogle Scholar
  93. 93.
    Wilks SA, Michels H, Keevil CW (2005) The survival of Escherichia coli O157 on a range of metal surfaces. Int J Food Microbiol 105:445–454PubMedCrossRefGoogle Scholar
  94. 94.
    Wilks SA, Michels HT, Keevil CW (2006) Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int J Food Microbiol 111:93–98PubMedCrossRefGoogle Scholar
  95. 95.
    Yoshida Y, Furuta S, Niki E (1993) Effects of metal chelating agents on the oxidation of lipids induced by copper and iron. Biochim Biophys Acta 1210:81–88PubMedCrossRefGoogle Scholar
  96. 96.
    Zhu L, Elguindi J, Rensing C, Ravishankar S (2012) Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica. Food Microbiol 30:303–310Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christophe Espírito Santo
    • 1
  • Nadezhda German
    • 2
  • Jutta Elguindi
    • 3
  • Gregor Grass
    • 4
  • Christopher Rensing
    • 5
    Email author
  1. 1.IMAR – Instituto do MarUniversidade de CoimbraCoimbraPortugal
  2. 2.Research Triangle InstituteResearch Triangle ParkUSA
  3. 3.Department of Soil, Water and Environmental SciencesUniversity of ArizonaTucsonUSA
  4. 4.Bundeswehr Institute of MicrobiologyMunichGermany
  5. 5.Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations