An Early Completion Algorithm: Thue’s 1914 Paper on the Transformation of Symbol Sequences

  • James F. Power
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8493)

Abstract

References to Thue’s 1914 paper on string transformation systems are based mainly on a small section of that work defining Thue systems. A closer study of the remaining parts of that paper highlight a number of important themes in the history of computing: the transition from algebra to formal language theory, the analysis of the “computational power” (in a pre-1936 sense) of rules, and the development of algorithms to generate rule-sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thue, A.: Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln. Christiana Videnskabs-Selskabs Skrifter, I. Math.-naturv. Klasse 10 (1914)Google Scholar
  2. 2.
    Post, E.L.: Recursive unsolvability of a problem of Thue. Journal of Symbolic Logic 12(1), 1–11 (1947)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer (1997)Google Scholar
  4. 4.
    Book, R.V., Otto, F.: String-rewriting Systems. Springer (1993)Google Scholar
  5. 5.
    Nagell, T., Selberg, A., Selberg, S., Thalberg, K. (eds.): Selected Mathematical Papers of Axel Thue. Universitetsforlaget, Oslo (1977)Google Scholar
  6. 6.
    Thue, A.: Über unendliche Zeichenreihen. Christiana Videnskabs-Selskabs Skrifter. I. Math. -Naturv. Klasse 7 (1906)Google Scholar
  7. 7.
    Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Christiana Videnskabs-Selskabs Skrifter, I. Math. -Naturv. Klasse 1 (1912)Google Scholar
  8. 8.
    Berstel, J.: Axel Thue’s papers on repetitions in words: a translation. Publications du LaCIM, Université du Québec à Montréal (1995)Google Scholar
  9. 9.
    Marcus, S.: Words and languages everywhere. In: Martin-Vide, C., Mitrana, V., Paun, G. (eds.) Formal Languages and Applications, pp. 11–53. Springer (2004)Google Scholar
  10. 10.
    Thue, A.: Die Lösung eines Spezialfalles eines generellen logischen Problems. Christiana Videnskabs-Selskabs Skrifter, I. Math.-naturv. Klasse 8 (1910)Google Scholar
  11. 11.
    Steinby, M., Thomas, W.: Trees and term rewriting in 1910: On a paper by Axel Thue. EATCS Bull. 72, 256–269 (2000)MathSciNetGoogle Scholar
  12. 12.
    Buchberger, B.: History and basic features of the critical-pair/completion procedure. Journal of Symbolic Computation 3(1-2), 3–38 (1987)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Newman, M.: On theories with a combinatorial definition of “equivalence”. Annals of Mathematics 43(2), 223–243 (1942)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Matiyasevicha, Y., Sénizergue, G.: Decision problems for semi-Thue systems with a few rules. Theoretical Computer Science (330), 145–169 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • James F. Power
    • 1
  1. 1.Department of Computer ScienceNational University of IrelandCo. KildareIreland

Personalised recommendations